File: patterned-congruences.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (1474 lines) | stat: -rw-r--r-- 48,945 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
; Copyright (C) 2013, ForrestHunt, Inc.
; Written by Matt Kaufmann, December, 2013
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; This book illustrates the use of patterned congruence rules: congruence rules
; of the form (implies (inner-equiv y1 y2) (outer-equiv (fn ...) (fn ...)))
; argument lists for fn are not simply duplicate-free lists of variables.  Some
; of the examples are lower-level than others, so this file serves several
; purposes, as follows.

; - It provides a demo of congruence-based reasoning and patterned congruences.
; - It serves as a regression test for patterned congruences.
; - It augments the user-level documentation.
; - It contains some lower-level discussion that can help ACL2 implementors
;   understand issues that might arise.

; We start with a demo, and then proceed with what are essentially regression
; tests.

(in-package "ACL2")

(include-book "std/testing/must-fail" :dir :system)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Demo
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; In this demo we introduce a notion of tree equivalence, where two binary
; trees are equivalent if one can be obtained by the other by a sequence of
; "flips", swapping left and right child at a subtree.  It is split into the
; following sections.

; Demo Section 1: A tree equivalence
; Demo Section 2: An equivalence-based rewrite rule
; Demo Section 3: Traditional congruence-based reasoning example
; Demo Section 4: Patterned congruence example

;;;;;;;;;;
; Demo Section 1: A tree equivalence
;;;;;;;;;;

; We begin with some macros to assist those not fluent in Lisp.

(defmacro leaf-p (x) ; a leaf of a binary CONS tree
  `(atom ,x))
(defmacro left (x)
  `(car ,x))
(defmacro right (x)
  `(cdr ,x))

; The following equivalence relation on binary trees holds, roughly speaking,
; when one tree can be transformed to the other by a sequence of "flips":
; switching left and right children of a node.

(defun tree-equiv (t1 t2)
  (cond ((or (leaf-p t1) (leaf-p t2))
         (equal t1 t2))
        (t (or (and (tree-equiv (left t1) (left t2))
                    (tree-equiv (right t1) (right t2)))
               (and (tree-equiv (left t1) (right t2))
                    (tree-equiv (right t1) (left t2)))))))

; An induction hint is needed to prove transitivity (below):

(defun defequiv-tree-equiv-induction-hint (t1 t2 t3)
  (cond
   ((or (leaf-p t1) (leaf-p t2) (leaf-p t3))
    t)
   (t (and (defequiv-tree-equiv-induction-hint (left t1) (left t2) (left t3))
           (defequiv-tree-equiv-induction-hint (left t1) (left t2) (right t3))
           (defequiv-tree-equiv-induction-hint (left t1) (right t2) (left t3))
           (defequiv-tree-equiv-induction-hint (left t1) (right t2) (right t3))
           (defequiv-tree-equiv-induction-hint (right t1) (left t2) (left t3))
           (defequiv-tree-equiv-induction-hint (right t1) (left t2) (right t3))
           (defequiv-tree-equiv-induction-hint (right t1) (right t2) (left t3))
           (defequiv-tree-equiv-induction-hint (right t1) (right t2) (right t3))))))

(defequiv tree-equiv
  :hints (("Goal" :induct (defequiv-tree-equiv-induction-hint x y z))))

;;;;;;;;;;
; Demo Section 2: An equivalence-based rewrite rule
;;;;;;;;;;

; The following function swaps every pair of children in a binary tree.

(defun mirror (tree)
  (cond ((leaf-p tree) tree)
        (t (cons (mirror (right tree))
                 (mirror (left tree))))))

; Notice that the following rewrite rule is based on tree-equiv, not equal.  It
; will replace (mirror x) by x at a subterm occurrence for which it is
; sufficient to preserve the tree-equiv relation.

(defthm tree-equiv-mirror
  (tree-equiv (mirror x)
              x))

;;;;;;;;;;
; Demo Section 3: Traditional congruence-based reasoning example
;;;;;;;;;;

(defun tree-product (tree)

; Returns the product of the numeric fringe of tree.

  (cond ((acl2-numberp tree)
         tree)
        ((leaf-p tree)
         1)
        (t (* (tree-product (left tree))
              (tree-product (right tree))))))

; Just a test (proved by evaluation):

(defthm test-tree-product
  (equal (tree-product '((3 (4 (5 3 a 6) 7 b (4 2)))))
         (* 3 4 5 3 6 7 4 2))
  :rule-classes nil)

; This congruence rule says that the argument of tree-product can be rewritten
; to preserve the tree-equiv relation.

(defthm tree-equiv-->-equal-tree-product
  (implies (tree-equiv x y)
           (equal (tree-product x)
                  (tree-product y)))
  :rule-classes :congruence)

; This little example is proved automatically by rewriting the term (mirror x).
; Of course, it is easy to prove this theorem directly, without
; tree-equiv-mirror or tree-equiv-->-equal-tree-product; here, we are just
; giving a simple illustration of congruence-based rewriting.

(defthm tree-product-mirror
  (equal (tree-product (mirror y))
         (tree-product y))
  :rule-classes nil)

;;;;;;;;;;
; Demo Section 4: Patterned congruence example
;;;;;;;;;;

; Now suppose we want to sweep the tree to collect not only the product of the
; numeric leaves, but additional information as well.  Function tree-data does
; that, using function combine-tree-data to combine recursive calls.

(defun combine-tree-data (t1 t2)
  (list (* (first t1) (first t2))
        (append (second t1) (second t2))))

(defun tree-data (tree)

; Returns (list product leaves), where leaves is the numeric fringe of tree and
; product is the product of those leaves.

  (cond ((acl2-numberp tree)
         (list tree (list tree)))
        ((leaf-p tree)
         (list 1 nil))
        (t (combine-tree-data (tree-data (left tree))
                              (tree-data (right tree))))))

; Test (proved by evaluation):

(defthm tree-data-test
  (equal (tree-data '((3 (4 (5 3 a 6) 7 b (4 2)))))
         (list (* 3 4 5 3 6 7 4 2)
               '(3 4 5 3 6 7 4 2)))
  :rule-classes nil)

; Here comes a patterned congruence rule.

(defthm tree-equiv-->-equal-first-tree-data
  (implies (tree-equiv x y)
           (equal (first (tree-data x))
                  (first (tree-data y))))
  :rule-classes :congruence)

; The following example is proved by the rewrite of (mirror x) to x.  While
; this example is trivial, imagine that there are k1 functions like mirror and
; k2 like tree-data.  If we prove k1 rules like tree-equiv-mirror and k2 rules
; like tree-equiv-->-equal-first-tree-data, then these k1+k2 rules set us
; up to perform automatically all k1*k2 rewrites like first-tree-data-mirror.

(defthm first-tree-data-mirror
  (equal (first (tree-data (mirror y)))
         (first (tree-data y)))
  :rule-classes nil)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; General utilities for displaying pequivs and such
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun anon (termlist)
  (subst-var-lst '_ *anonymous-var* termlist))

(defun show-pequiv-pattern (pat)
  (declare (xargs :mode :program))
  (list 'pequiv-pattern
        :fn (access pequiv-pattern pat :fn)
        :posn (access pequiv-pattern pat :posn)
        :pre-rev (anon (access pequiv-pattern pat :pre-rev))
        :post (anon (access pequiv-pattern pat :post))
        :next (let ((next (access pequiv-pattern pat :next)))
                (cond ((symbolp next) :next-var)
                      (t (show-pequiv-pattern next))))))

(defun show-pequiv (pequiv)
  (declare (xargs :mode :program))
  (list 'pequiv
        :pattern
        (show-pequiv-pattern (access pequiv pequiv :pattern))
        :unify-subst (access pequiv pequiv :unify-subst)
        :congruence-rule (access congruence-rule
                                 (access pequiv pequiv :congruence-rule)
                                 :rune)))

(defun show-pequiv-lst (pequiv-lst)
  (declare (xargs :mode :program))
  (cond ((atom pequiv-lst) ; could be :none
         nil)
        (t (cons (show-pequiv (car pequiv-lst))
                 (show-pequiv-lst (cdr pequiv-lst))))))

(defun show-pequiv-alist (pequiv-alist)
  (declare (xargs :mode :program))
  (cond ((endp pequiv-alist) nil)
        (t (cons (cons (caar pequiv-alist)
                       (show-pequiv-lst (cdar pequiv-alist)))
                 (show-pequiv-alist (cdr pequiv-alist))))))

(defmacro show-pequivs (fn)
  `(let* ((prop (getprop ',fn 'pequivs nil 'current-acl2-world (w state))))
     (and prop
          (list 'pequivs-property
                :shallow
                (show-pequiv-alist (access pequivs-property prop :shallow))
                :deep
                (show-pequiv-alist (access pequivs-property prop :deep))
                :deep-pequiv-p
                (access pequivs-property prop :deep-pequiv-p)))))

(defun show-pequiv-info (pequiv-info)
  (declare (xargs :mode :program))
  (and pequiv-info
       (list 'pequiv-info
             :rewritten-args-rev (access pequiv-info pequiv-info
                                         :rewritten-args-rev)
             :rest-args (access pequiv-info pequiv-info :rest-args)
             :alist (access pequiv-info pequiv-info :alist)
             :bkptr (access pequiv-info pequiv-info :bkptr)
             :fn (access pequiv-info pequiv-info :fn)
             :geneqv (access pequiv-info pequiv-info :geneqv)
             :deep-pequiv-lst (access pequiv-info pequiv-info
                                      :deep-pequiv-lst))))

(defmacro trace-pequivs (allp)
  `(trace!
    (rewrite :entry (list 'rewrite :term term :alist alist :bkptr bkptr
                          :geneqv geneqv
                          :pequiv-info (show-pequiv-info pequiv-info))
             :notinline t)
    (rewrite-args :entry (list 'rewrite-args
                               :args args
                               :alist alist
                               :bkptr bkptr
                               :rewritten-args-rev rewritten-args-rev
                               :deep-pequiv-lst
                               (show-pequiv-lst deep-pequiv-lst)
                               :shallow-pequiv-lst
                               (show-pequiv-lst shallow-pequiv-lst)
                               :parent-geneqv parent-geneqv
                               :fn fn
                               :geneqv geneqv)
                  :notinline t)
    one-way-unify1-term-alist
    one-way-unify1-term-alist-lst
    ,@(and allp
           '(accumulate-shallow-pequiv-alist
             geneqv-refinementp
             (expand-abbreviations
              :entry (list 'expand-abbreviations :term term :alist alist
                           :geneqv geneqv
                           :pequiv-info (show-pequiv-info pequiv-info))
              :notinline t)
             (expand-abbreviations-lst
              :entry (list 'expand-abbreviations-lst
                           :lst lst
                           :alist alist
                           :bkptr bkptr
                           :rewritten-args-rev rewritten-args-rev
                           :deep-pequiv-lst
                           (show-pequiv-lst deep-pequiv-lst)
                           :shallow-pequiv-lst
                           (show-pequiv-lst shallow-pequiv-lst)
                           :parent-geneqv parent-geneqv
                           :fn fn
                           :geneqv-lst geneqv-lst)
              :notinline t)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for shallow pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun f1 (x y z)
  (list x y z))

(defun f2 (x y)
  (declare (ignore y))
  x)

(defun e1 (x y)
  (equal x y))

(defequiv e1)

(defthm e1-implies-iff-f1-cong-1
  (implies (e1 y1 y2)
           (iff (f1 3 y1 (cons x x))
                (f1 3 y2 (cons x x))))
  :rule-classes (:congruence))

(defconst *pequiv-1*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 2
                                    :PRE-REV ('3)
                                    :POST ((CONS X X))
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE
                             E1-IMPLIES-IFF-F1-CONG-1)))

(assert-event
 (equal (show-pequivs f1)
        `(PEQUIVS-PROPERTY
          :SHALLOW ((IFF ,*pequiv-1*))
          :DEEP NIL
          :DEEP-PEQUIV-P NIL)))

(assert-event
 (equal (show-pequiv-lst
         (find-rules-of-rune
          '(:congruence e1-implies-iff-f1-cong-1)
          (w state)))
        (list *pequiv-1*)))

(defthm f2-returns-first-arg
  (e1 (f2 a b) a))

(in-theory (disable f1 f2 e1
                    (tau-system)
                    (:type-prescription f1)
                    (:type-prescription f2)))

#+skip ; only for interactive use
(trace-pequivs nil)

; Rewriting in the proof-builder comprehends patterned congruences:
(defthm test-1-proof-builder
  (iff (f1 3 (f2 z 8) (cons u u))
       (f1 3 z (cons u u)))
  :instructions ((:dv 1 2)
                 (:rewrite f2-returns-first-arg)
                 :top
                 :s-prop)
  :rule-classes nil)

(defthm test-1
  (iff (f1 3 (f2 z 8) (cons u u))
       (f1 3 z (cons u u))))

#+skip ; only for interactive use
(trace-pequivs t)

(must-fail ; outer equiv equal is not preserved (only iff)
 (thm
  (equal (f1 3 (f2 z 8) (cons u u))
         (f1 3 z (cons u u)))))

#+skip ; only for interactive use
(untrace$)

(defun e2 (x y)
  (equal x y))

(defequiv e2)

(defrefinement e2 iff)

(in-theory (disable e2))

(must-fail ; e2 refines iff, not the other way around
 (thm
  (e2 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))))

(defun e3 (x y)
  (iff x y))

(defequiv e3)

(must-fail ; we need the refinement rule just below
 (thm
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :hints (("Goal" :in-theory (disable e3)))))

(defrefinement iff e3)

(in-theory (disable e3))

; Succeeds because of test-1 and refinement:
(defthm test-2
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :rule-classes nil)

(in-theory (disable test-1))

; Pequiv applies because of refinement:
(defthm test-2-again
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :rule-classes nil)

; Fails because unification fails (u and v are distinct):
(must-fail
 (thm
  (e3 (f1 3 (f2 z 8) (cons u v))
      (f1 3 z (cons u v)))))

; Still fails, because we don't know about substituting into third arg.
(must-fail
 (thm
  (implies (e1 u v)
           (e3 (f1 3 (f2 z 8) (cons u v))
               (f1 3 z (cons u u))))))

(must-fail ; not a valid congruence rule
 (defthm e1-implies-iff-f1-cong-2-try1
   (implies (e1 z1 z2)
            (iff (f1 x (f2 a b) z1)
                 (f1 x a z2)))
   :hints (("Goal" :in-theory (enable f1 f2 e1)))
   :rule-classes (:congruence)))

(defthm e1-implies-iff-f1-cong-2
  (implies (e1 z1 z2)
           (iff (f1 x (f2 a b) z1)
                (f1 x (f2 a b) z2)))
   :hints (("Goal" :in-theory (enable f1 f2 e1)))
  :rule-classes (:congruence))

(defconst *pequiv-2*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 3
                                    :PRE-REV ((F2 _ _)
                                              _)
                                    :POST NIL
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))

(assert-event
 (equal
  (show-pequivs f1)
  `(PEQUIVS-PROPERTY
    :SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
    :DEEP NIL
    :DEEP-PEQUIV-P NIL)))

; Fails because v is under a cons, hence can't be replaced by u there:
(must-fail
 (defthm test-3
   (implies (e1 u v)
            (e3 (f1 3 (f2 z 8) (cons u v))
                (f1 3 z (cons u u))))
   :rule-classes nil))

(defcong e1 e1 (cons x y) 2
  :hints (("Goal" :in-theory (enable e1))))

; The following succeeds.  Note however that v is not immediately replaced by u
; (in low-level speak, remove-trivial-equivalences does not remove v).  Rather,
; rewriting replaces v with u (in low-level speak, rewrite-solidify does that
; replacement under (cons u v) because it suffices to preserve e1 there and (e1
; v 2) is true according to the type-alist).  If you trace
; remove-trivial-equivalences, you'll see its failure below (until after v has
; been removed by rewriting), but you'll see success if instead you change (e1
; u v) to (equal u v).
(defthm test-3
  (implies (e1 u v)
           (e3 (f1 3 (f2 z 8) (cons u v))
               (f1 3 z (cons u u))))
  :rule-classes nil)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for deep pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun f3 (x)
  x)

(defthmd e1-implies-iff-f1-cong-3
  (implies (e1 y1 y2)
           (iff (f1 4 (f3 y1) (+ w w))
                (f1 4 (f3 y2) (+ w w))))
  :hints (("Goal" :in-theory (enable e1)))
  :rule-classes (:congruence))

(assert-event
 (equal
  (show-pequivs f1) ; unchanged except :deep-pequiv-p is now t
  `(PEQUIVS-PROPERTY
    :SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
    :DEEP NIL
    :DEEP-PEQUIV-P T)))

(defconst *pequiv-3*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 2
                                    :PRE-REV ('4)
                                    :POST ((BINARY-+ W W))
                                    :NEXT (PEQUIV-PATTERN :FN F3
                                                          :POSN 1
                                                          :PRE-REV NIL
                                                          :POST NIL
                                                          :NEXT :NEXT-VAR))
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))

(assert-event
 (equal
  (show-pequivs f3)
  `(PEQUIVS-PROPERTY
    :SHALLOW NIL
    :DEEP ((IFF ,*pequiv-3*))
    :DEEP-PEQUIV-P NIL)))

(defun f4 (x)
  x)

(defthm f4-is-f2
  (e1 (f4 x)
      (f2 x x)))

(in-theory (disable f3 f4 f2-returns-first-arg))

(must-fail ; need to enable e1-implies-iff-f1-cong-3
 (defthm test-4
   (implies (f1 4 (f3 (f2 a a)) (+ b b))
            (f1 4 (f3 (f4 a)) (+ b b)))
   :rule-classes nil))

(in-theory (enable e1-implies-iff-f1-cong-3))

(defthm test-4
  (implies (f1 4 (f3 (f2 a a)) (+ b b))
           (f1 4 (f3 (f4 a)) (+ b b)))
  :rule-classes nil)

; Now let's try a variant of test-4 that requires some rewriting.

(defun f5 (x) ; avoid making this a simple rule; see below
  (car (list 4 x x)))

; We insist on making just one pass through the rewriter, so that we can see
; that the matcher uses the rewritten-args.  Since f5 is not a simple rule, we
; don't need a hint of :do-not '(preprocess) in order to ensure that the proof
; completes at "Goal".

(defthm test-5
  (implies (f1 4 (f3 (f2 a a)) (+ b b))
           (f1 (f5 x) (f3 (f4 a)) (+ b b)))
  :hints ((and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; We next consider a variant of the test above that exercises simple rules
; only, thus showing that the "preprocess" process can handle patterned
; congruences.

(in-theory (disable f4-is-f2))

(defun f5-simple (x)
  (car (list 4 x)))

(defthm f4-is-f2-simple
  (e1 (f4 x)
      (f2 x 7))
  :hints (("Goal" :in-theory (enable f2 f4))))

; (trace-pequivs t)

#||
          6> (EXPAND-ABBREVIATIONS
                  :TERM (F1 (F5-SIMPLE X)
                            (F3 (F4 A))
                            (BINARY-+ B B))
                  :ALIST NIL
                  :GENEQV ((NIL IFF
                                :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                  :PEQUIV-INFO NIL)
...
            7> (EXPAND-ABBREVIATIONS-LST
                :LST ((F5-SIMPLE X)
                      (F3 (F4 A))
                      (BINARY-+ B B))
                :ALIST NIL
                :BKPTR 1
                :REWRITTEN-ARGS-REV NIL
                :DEEP-PEQUIV-LST NIL
                :SHALLOW-PEQUIV-LST
                (...
                 (PEQUIV
                    :PATTERN (PEQUIV-PATTERN :FN F1
                                             :POSN 3
                                             :PRE-REV ((F2 _ _) _)
                                             :POST NIL
                                             :NEXT :NEXT-VAR)
                    :UNIFY-SUBST NIL
                    :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
                :PARENT-GENEQV
                ((NIL IFF
                      :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :FN F1
                :GENEQV-LST NIL)
...
              8> (EXPAND-ABBREVIATIONS-LST
                  :LST ((F3 (F4 A)) (BINARY-+ B B))
                  :ALIST NIL
                  :BKPTR 2
                  :REWRITTEN-ARGS-REV ('4)
                  :DEEP-PEQUIV-LST NIL
                  :SHALLOW-PEQUIV-LST
                  (...
                   (PEQUIV
                    :PATTERN (PEQUIV-PATTERN :FN F1
                                             :POSN 3
                                             :PRE-REV ((F2 _ _) _)
                                             :POST NIL
                                             :NEXT :NEXT-VAR)
                    :UNIFY-SUBST NIL
                    :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
                  :PARENT-GENEQV
                  ((NIL IFF
                        :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                  :FN F1
                  :GENEQV-LST NIL)
...
                9> (EXPAND-ABBREVIATIONS
                       :TERM (F3 (F4 A))
                       :ALIST NIL
                       :GENEQV NIL
                       :PEQUIV-INFO
                       (PEQUIV-INFO
                            :REWRITTEN-ARGS-REV ('4)
                            :REST-ARGS ((BINARY-+ B B))
                            :ALIST NIL
                            :BKPTR 2
                            :FN F1
                            :GENEQV
                            ((NIL IFF
                                  :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                            :DEEP-PEQUIV-LST NIL))
...
                  10> (EXPAND-ABBREVIATIONS-LST
                           :LST ((F4 A))
                           :ALIST NIL
                           :BKPTR 1
                           :REWRITTEN-ARGS-REV NIL
                           :DEEP-PEQUIV-LST NIL
                           :SHALLOW-PEQUIV-LST
                           ((PEQUIV :PATTERN (PEQUIV-PATTERN :FN F3
                                                             :POSN 1
                                                             :PRE-REV NIL
                                                             :POST NIL
                                                             :NEXT :NEXT-VAR)
                                    :UNIFY-SUBST ((W . B))
                                    :CONGRUENCE-RULE
                                    (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))
                           :PARENT-GENEQV NIL
                           :FN F3
                           :GENEQV-LST NIL)
...
                  11> (EXPAND-ABBREVIATIONS
                        :TERM (F4 A)
                        :ALIST NIL
                        :GENEQV ((3147 E1
                                       :CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3))
                        :PEQUIV-INFO NIL)
...
                  <11 (EXPAND-ABBREVIATIONS
                           536870884 (F2 A '7)
                           ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                   (:REWRITE F4-IS-F2-SIMPLE)
                                   (:REWRITE CAR-CONS)
                                   (:DEFINITION F5-SIMPLE))))
...
                  <10 (EXPAND-ABBREVIATIONS-LST
                           536870884 ((F2 A '7))
                           ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                   (:REWRITE F4-IS-F2-SIMPLE)
                                   (:REWRITE CAR-CONS)
                                   (:DEFINITION F5-SIMPLE))))
                <9 (EXPAND-ABBREVIATIONS
                        536870884 (F3 (F2 A '7))
                        ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                (:REWRITE F4-IS-F2-SIMPLE)
                                (:REWRITE CAR-CONS)
                                (:DEFINITION F5-SIMPLE))))

||#

(defthm test-5-simple
  (implies (f1 4 (f3 (f2 a 7)) (+ b b))
           (f1 (f5-simple x) (f3 (f4 a)) (+ b b)))
  :hints (("Goal" :do-not '(simplify)))
  :rule-classes nil)

; Undo the effects of the test just above.
(in-theory (e/d (f4-is-f2) (f4-is-f2-simple)))

; The next one succeeds but takes more than one pass, since we need to wait for
; the last argument to be rewritten.

(defthm times-2
  (equal (* 2 x)
         (+ x x)))

(must-fail
 (defthm test-6
   (implies (f1 4 (f3 (f2 a a)) (* 2 b))
            (f1 (f5 x) (f3 (f4 a)) (* 2 b)))
   :hints ((and (not (equal id *initial-clause-id*))
                '(:error "Didn't complete at main Goal!")))
   :rule-classes nil))

(defthm test-6
  (implies (f1 4 (f3 (f2 a a)) (* 2 b))
           (f1 (f5 x) (f3 (f4 a)) (* 2 b)))
  :rule-classes nil)

; Next, we test the use of our matcher when the alist comes into play.

(defun f6 (k u y)
  (f1 k (f3 (f4 u)) y))

; For the following, (trace-pequivs nil) shows:

#||

    3> (REWRITE :TERM (F1 K (F3 (F4 U)) Y)
                :ALIST ((Y BINARY-+ B B) (U . A) (K QUOTE 4))
                :BKPTR RHS
                :GENEQV ((NIL IFF
                              :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :PEQUIV-INFO NIL)
...
            7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
                                              (Y)
                                              ((Y BINARY-+ B B) (U . A) (K QUOTE 4))
                                              NIL)
...
            <7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T ((W . B)))

||#

(defthm test-7
  (implies (f1 4 (f3 (f2 a a)) (* 2 b))
           (f6 4 a (* 2 b)))
  :hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
          (and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; We next construct an example for which our matching algorithm deals with
; alists that contain pairs of the form (v . (:sublis-var u . s)), where u is a
; term, meaning that v is bound to u/s.

(defun f6-a (k u y)
  (f1 k (f3 (f4 u)) (+ (* y y) (* y y))))

; For the following, (trace-pequivs nil) shows:

#||

    3> (REWRITE :TERM (F1 K (F3 (F4 U))
                          (BINARY-+ (BINARY-* Y Y)
                                    (BINARY-* Y Y)))
                :ALIST ((Y . B) (U . A) (K QUOTE 4))
                :BKPTR BODY
                :GENEQV ((NIL IFF
                              :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :PEQUIV-INFO NIL)
...
            7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
                                              ((BINARY-+ (BINARY-* Y Y)
                                                         (BINARY-* Y Y)))
                                              ((Y . B) (U . A) (K QUOTE 4))
                                              NIL)
...
            <7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T
                                              ((W :SUBLIS-VAR (BINARY-* Y Y)
                                                  (Y . B)
                                                  (U . A)
                                                  (K QUOTE 4))))


||#

(defthm test-7-a
  (implies (f1 4 (f3 (f2 a a)) (* 2 b b))
           (f6-a 4 a b))
  :hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
          (and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; A typical use will be mv-nth.  Let's try such an example.

(defund f7 (y)
  (mv (true-listp y) (len (append y y))))

(defun e4 (x y)
  (equal (len x) (len y)))
(defequiv e4)
(in-theory (disable e4))

(defthm len-append
  (equal (len (append x y))
         (+ (len x) (len y))))

(defthm e4-implies-equal-mv-nth-cong
  (implies (e4 y1 y2)
           (equal (mv-nth 1 (f7 y1))
                  (mv-nth 1 (f7 y2))))
  :hints (("Goal" :in-theory (enable e4 f7)))
  :rule-classes :congruence)

(defthm len-revappend
  (equal (len (revappend x y))
         (+ (len x) (len y))))

(defthm len-reverse
  (equal (len (reverse x))
         (len x)))

(defthm reverse-is-id
  (e4 (reverse x) x)
  :hints (("Goal" :in-theory (enable e4))))

(defthm test-8
  (equal (mv-nth 1 (f7 (reverse x)))
         (mv-nth 1 (f7 x)))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse))))

(defun id (x)
  x)

(in-theory (disable id (:type-prescription id)))

(defthm e4-implies-equal-mv-nth-cong-b
  (implies (e4 y1 y2)
           (equal (mv-nth 1 (id (f7 y1)))
                  (mv-nth 1 (id (f7 y2)))))
  :hints (("Goal" :in-theory (enable e4 f7 id)))
  :rule-classes :congruence)

(defthm test-8-b
  (equal (append (mv-nth 1 (id (f7 (reverse x))))
                 (list u v))
         (append (mv-nth 1 (id (f7 x)))
                 (list u v)))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse))))

(defconst *pequiv-4*
  '(PEQUIV
    :PATTERN
    (PEQUIV-PATTERN
     :FN MV-NTH
     :POSN 2
     :PRE-REV ('1)
     :POST NIL
     :NEXT (PEQUIV-PATTERN :FN ID
                           :POSN 1
                           :PRE-REV NIL
                           :POST NIL
                           :NEXT (PEQUIV-PATTERN :FN F7
                                                 :POSN 1
                                                 :PRE-REV NIL
                                                 :POST NIL
                                                 :NEXT :NEXT-VAR)))
    :UNIFY-SUBST NIL
    :CONGRUENCE-RULE (:CONGRUENCE E4-IMPLIES-EQUAL-MV-NTH-CONG-B)))

(assert-event
 (equal
  (show-pequivs id)
  `(PEQUIVS-PROPERTY
    :SHALLOW NIL
    :DEEP ((EQUAL ,*pequiv-4*))
    :DEEP-PEQUIV-P NIL)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some soundness checks
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; We introduce the trivial coarsest equivalence relation, in which everything
; is equivalent.

(defun triv-equiv (x y)
     (declare (ignore x y))
     t)
(defequiv triv-equiv)

; We next do checks showing that we prevent some unsound congruence-based
; reasoning due to inappropriate independent rewrites.

; The following is certainly a theorem, since (equal (id1 a) a) is equal to t
; for all a.  Now suppose the rewriter encounters the term (equal (identity b)
; b).  The following congruence rule would make it sufficient to maintain
; triv-equiv when rewriting (identity x).  But the following is a provable
; rewrite rule: (triv-equiv (identity x) 1).  Applying this rule, we would
; reduce the original equality to (equal 1 b).  We would have thus transformed
; a theorem into a non-theorem, from which we could easily prove nil.  Hence
; the defthm just below should produce the following error:

;   ACL2 Error in ( DEFTHM EQUIV-IMPLIES-EQUAL-EQUAL-2 ...):
;   EQUIV-IMPLIES-EQUAL-EQUAL-2 is an unacceptable :CONGRUENCE rule because
;   the variable X-EQUIV occurs more than once in
;   (EQUAL (IDENTITY X-EQUIV) X-EQUIV).  See :DOC congruence.

(must-fail
 (defthm equiv-implies-equal-equal-2
   (implies (triv-equiv x x-equiv)
            (equal (equal (identity x) x)
                   (equal (identity x-equiv) x-equiv)))
   :rule-classes (:congruence)))

; Here is another such example.

(defun some-consp (x y)
  (or (consp x) (consp y)))

(defthm triv-equiv-implies-equal-some-consp-1
  (implies (triv-equiv x x-equiv)
           (equal (some-consp x (cons a b))
                  (some-consp x-equiv (cons a b))))
  :rule-classes (:congruence))

(defthm triv-equiv-implies-equal-some-consp-2
  (implies (triv-equiv y y-equiv)
           (equal (some-consp (cons a b) y)
                  (some-consp (cons a b) y-equiv)))
  :rule-classes (:congruence))

(defthm cons-is-nil
  (triv-equiv (cons x y) nil))

(in-theory (disable some-consp (some-consp)))

(defthm some-consp-rewrite-1
  (equal (some-consp (cons a b) (cons c d))
         (some-consp nil (cons c d)))
  :rule-classes nil)

(must-fail
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
 (defthm some-consp-rewrite-2
   (equal (some-consp (cons a b) (cons c d))
          (some-consp (cons a b) nil))
   :rule-classes nil))

(defthm some-consp-rewrite-2
  (equal (some-consp (cons a b) (cons c d))
         (some-consp (cons a b) nil))
  :hints (("Goal"
           :in-theory (disable triv-equiv-implies-equal-some-consp-1)))
  :rule-classes nil)

(must-fail
; [Same comment as for preceding must-fail form:]
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
; [Additional comment:]
; Notice also that this alleged theorem is false: the left-hand side of the
; equality is true but the right-hand side is false.  So it is good that the
; two arguments of the first some-consp call were not both rewritten using
; cons-is-nil!  This shows why the set of relevant patterned equivalences for
; an argument (here, of some-consp) is computed with respect to sibling
; arguments to the left that have been rewritten and sibling arguments on the
; right to the right that have not yet been rewritten.
 (thm (equal (some-consp (cons c1 c2) (cons d1 d2))
             (some-consp nil nil))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; A few additional tests
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; We make sure that if there is a duplicate variable in the argument list for
; the outer-equiv, then the congruence rule is treated as a (shallow) patterned
; congruence rule, not as a general (i.e., ordinary) congruence rule.

(defund f8 (x y z)
  (and (equal (len x) (len y))
       (equal (len y) (len z))))

(defthm e4-implies-equal-f8-cong
  (implies (e4 z1 z2)
           (equal (f8 x x z1)
                  (f8 x x z2)))
  :hints (("Goal" :in-theory (enable e4 f8)))
  :rule-classes :congruence)

(defthm test-9
  (equal (f8 a a (reverse u))
         (f8 a a u))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse)))
  :rule-classes nil)

; If the first two parameters of f8 are not syntactically equal, then the match
; fails for attempting rule e4-implies-equal-f8-cong.
(must-fail
 (thm
  (equal (f8 a b (reverse u))
         (f8 a b u))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse)))))

; We disallow calls in the conclusion of EQUAL, IF, IMPLIES, and lambdas.
; During development of support for patterned congruences, there was manual
; inspection of the error messages below.

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal
   (implies (e4 z1 z2)
            (equal (f8 (equal a b) 17 z1)
                   (f8 (equal a b) 17 z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-if
   (implies (e4 z1 z2)
            (equal (f8 (if (consp x) (cons 0 (cdr x)) x) x z1)
                   (f8 (if (consp x) (cons 0 (cdr x)) x) x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal
   (implies (e4 z1 z2)
            (equal (f8 (equal a b) 17 z1)
                   (f8 (equal a b) 17 z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-if
   (implies (e4 z1 z2)
            (equal (f8 (if (and (consp x)
                                (consp (cdr x))
                                (equal (car x) (cdr x)))
                           (cons 0 (cdr x))
                         x)
                       x z1)
                   (f8 (if (and (consp x)
                                (consp (cdr x))
                                (equal (car x) (cdr x)))
                           (cons 0 (cdr x))
                         x)
                       x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-implies
   (implies (e4 z1 z2)
            (equal (f8 (implies (consp x) (cons 0 (cdr x))) x z1)
                   (f8 (implies (consp x) (cons 0 (cdr x))) x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

;;; In July 2021 we extended remove-guard-holders to simplify
;;; (let ((var expr)) var) to expr.
#||
(must-fail
 (defthm e4-implies-equal-f8-cong-bad-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append nil x))) x)
                       x
                       z1)
                   (f8 (let ((x (append nil x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))
||#

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append (equal x x) x))) x)
                       x
                       z1)
                   (f8 (let ((x (append (equal x x) x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-if-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
                       x
                       z1)
                   (f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

; Each variable from the hypothesis must occur in the appropriate part of the
; conclusion.

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-1
   (implies (e4 z1 z2)
            (equal (f8 x x z-wrong)
                   (f8 x x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-2
   (implies (e4 z1 z2)
            (equal (f8 x x z1)
                   (f8 x x z-wrong)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-1-alt
   (implies (e4 z1 z2)
            (equal (f8 x x z-wrong)
                   (f8 x x z1)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

; The following form contains misellaneous lower-level tests, in particular of
; a low-level matching routine that is used in the implementation of patterned
; equivalence relations.

(progn

(defun e5 (x y) (equal (fix x) (fix y)))

(defequiv e5)

(defthm e5-implies-equal-a
  (implies (e5 y y-equiv)
           (equal (* x (+ y x)) (* x (+ y-equiv x))))
  :rule-classes (:congruence))

(assert-event
 (equal (getprop 'binary-+ 'pequivs nil 'current-acl2-world (w state))
        (let* ((lhs '(binary-* x (binary-+ y x)))
               (addr '(2 1))
               (rule (car (getprop 'e5-implies-equal-a
                                   'runic-mapping-pairs
                                   nil 'current-acl2-world (w state))))
               (nume (access congruence-rule rule :nume))
               (equiv 'e5)
               (rune '(:congruence e5-implies-equal-a))
               (deep-pequivs
                `((equal ,(make-pequiv lhs addr nume equiv rune)))))
          (make pequivs-property
                :deep deep-pequivs))))

(assert-event
 (equal (getprop 'binary-* 'pequivs nil 'current-acl2-world (w state))
        (make pequivs-property
              :deep-pequiv-p t)))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist nil)
       (alist '((y . b))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((z . c) (x . (h a)) (y . b)))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb)))
       (alist '((y . b))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (not ans))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb)))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((z . (:sublis-var c (b . bb)))
                    (y . (:sublis-var b (b . bb)))
                    (x . (:sublis-var (h a) (b . bb)))))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (r a1) a2))))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (not ans))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((w . a2)
                    (y . (:sublis-var b (b . bb) (c . (p (h a) a2))))
                    (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((w . a2)
                    (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                    (y . bb)))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb)
                (u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb)))))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s
                '((w . a2)
                  (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                  (y . bb)
                  (u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb))))))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s
                '((u . (:sublis-var (k b (g2 b))
                                    (b . bb) (c . (p (h a) a2))))
                  (w . a2)
                  (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                  (y . bb)))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb)
                (u . (:sublis-var (k x1 x2) (x1 . bb))))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (null ans))))

)

; The next set of tests is based closely on those for f1, but replacing f1 with
; a function f9 that takes an extra argument before the position of the
; designated variable occurring on the lhs of the patterned congruence rule.
; This test is intended to stress the implementation's reversal of the
; arguments before that position, and also to test that the matching algorithm
; pays attention to variables occurring both before and after that position.

(defun f9 (x1 x2 y z1 z2)
  (list x1 x2 y z1 z2))

(defthm e1-implies-iff-f9-cong-1
  (implies (e1 y1 y2)
           (iff (f9 3 (car u) y1 (cons x x) (cdr u))
                (f9 3 (car u) y2 (cons x x) (cdr u))))
  :rule-classes (:congruence))

(defconst *pequiv-5*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F9
                                    :POSN 3
                                    :PRE-REV ((CAR U) '3)
                                    :POST ((CONS X X) (CDR U))
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE
                             E1-IMPLIES-IFF-F9-CONG-1)))

(assert-event
 (equal (show-pequivs f9)
        `(PEQUIVS-PROPERTY
          :SHALLOW ((IFF ,*pequiv-5*))
          :DEEP NIL
          :DEEP-PEQUIV-P NIL)))

(assert-event
 (equal (show-pequiv-lst
         (find-rules-of-rune
          '(:congruence e1-implies-iff-f9-cong-1)
          (w state)))
        (list *pequiv-5*)))

; (defthm f2-returns-first-arg
;   (e1 (f2 a b) a))
(in-theory (enable f2-returns-first-arg))

(in-theory (disable f9 f2 e1
                    (tau-system)
                    (:type-prescription f9)
                    (:type-prescription f2)))

(defthm test-10
  (iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
       (f9 3 (car v) z (cons u u) (cdr v)))
  :rule-classes nil)

(defthm test-10-proof-builder
  (iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
       (f9 3 (car v) z (cons u u) (cdr v)))
  :instructions ((:dv 1 3)
                 (:rewrite f2-returns-first-arg)
                 :top
                 :s-prop)
  :rule-classes nil)

(must-fail ; match fails between (car v) and w
 (thm
  (iff (f9 3 (car v) (f2 z 8) (cons u u) w)
       (f9 3 (car v) z (cons u u) w))))

(must-fail ; initial two args are in the wrong order
 (thm
  (iff (f9 (car v) 3 (f2 z 8) (cons u u) (cdr v))
       (f9 (car v) 3 z (cons u u) (cdr v)))))

; The implementation replaces uniquely occurring variables by a special
; "anonymous variable", as discussed in the Essay on Patterned Congruences and
; Equivalences.  It would likely be unsound to allow this variable to occur in
; the submitted patterned congruence rule, so we check here that this causes an
; error.

(assert-event (eq *anonymous-var* '|Anonymous variable|))

(must-fail
 (defthm e1-implies-iff-f9-cong-1-bad
   (implies (e1 y1 y2)
            (iff (f9 3 (car |Anonymous variable|)
                     y1
                     (cons x x) (cdr |Anonymous variable|))
                 (f9 3 (car |Anonymous variable|)
                     y2
                     (cons x x) (cdr |Anonymous variable|))))
   :rule-classes (:congruence)))

; The next test emphasizes a point made in :doc patterned-congruence: the match
; is done after preceding arguments have already been rewritten.

(defun f10 (x)
  (list 3 x x))

(defun f11 (x y)
  (declare (ignore y))
  x)

(defthm e1-implies-iff-f11-cong-2
  (implies (e1 y1 y2)
           (iff (f11 (f10 x) y1)
                (f11 (f10 x) y2)))
  :rule-classes (:congruence))

(in-theory (disable f11 (:t f11) e1))

(must-fail ; fails because f10 expands before matching the rule's lhs
 (thm (implies (e1 y1 y2)
               (iff (f11 (f10 x) y1)
                    (f11 (f10 x) y2)))))

(defthm test-11
  (implies (e1 y1 y2)
           (iff (f11 (f10 x) y1)
                (f11 (f10 x) y2)))
  :hints (("Goal" :in-theory (disable f10)))
  :rule-classes nil)

; Our next test checks that we account for matches connecting the argument
; containing the unique variable and arguments after that one.

(defun e6 (x y)
  (equal x y))

(defequiv e6)

(defun f12 (x y)
  (equal x y))

(defun f13 (x y)
  (declare (ignore y))
  x)

(defthm e1-implies-equal-f12-f13-cong-2
  (implies (e6 y1 y2)
           (equal (f12 (f13 x y1) x)
                  (f12 (f13 x y2) x)))
  :rule-classes (:congruence))

(defun f14 (x)
  x)

(defthm f14-is-id
  (e6 (f14 x) x))

(in-theory (disable e6 (:t e6) f12 (:t f12) f13 (:t f13) f14 (:t f14)))

(defthm test-12
  (equal (f12 (f13 x (f14 y)) x)
         (f12 (f13 x y) x))
  :rule-classes nil)

(must-fail
 (thm
  (equal (f12 (f13 x (f14 y)) x2)
         (f12 (f13 x y) x2))))