File: split-types-examples.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (302 lines) | stat: -rw-r--r-- 9,821 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
; Copyright (C) 2013, Regents of the University of Texas
; Written by Matt Kaufmann, April, 2013
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Examples illustrating XARGS keyword :SPLIT-TYPES

(in-package "ACL2")

; cert_param: (non-acl2r)

(include-book "std/testing/must-eval-to-t" :dir :system)
(include-book "std/testing/must-fail" :dir :system)

(defun nat-< (x y)
  (declare (xargs :guard t))
  (and (natp x)
       (natp y)
       (< x y)))

; First we have a traditional sort of definition, where :split-types is omitted
; and hence defaults to nil.  Notice that the guard incorporates the type
; declarations.

(defun f1 (x y)
  (declare (xargs :guard (nat-< x y))
           (type (integer -3 *) x)
           (type integer y))
  (assert$ (< x (* 2 y))
           (cons x y)))

(assert-event (equal (guard 'f1 nil (w state))
                     '(IF (NAT-< X Y)
                          (IF (IF (INTEGERP X) (NOT (< X '-3)) 'NIL)
                              (INTEGERP Y)
                              'NIL)
                          'NIL)))

; The next example is the result of adding :split-types t to the code just
; above.  This time, the type is not part of the guard.

(defun f2 (x y)
  (declare (xargs :guard (nat-< x y)
                  :split-types t)
           (type (integer -3 *) x)
           (type integer y))
  (assert$ (< x (* 2 y))
           (cons x y)))

(assert-event (equal (guard 'f2 nil (w state))
                     '(NAT-< X Y)))

; We can use :guard-debug with :split-types t.  The hypothesis of the form
; (EXTRA-INFO '(:GUARD (:TYPE F2-GUARD-DEBUG)) '(INSIST <term>))
; arise from the new guard proof obligation that the explicitly-provided :guard
; implies <term>, which is the conjunction of the terms derived from the type
; declarations.  We use :verify-guards nil so that we can see the proof
; obligation.

(defun f2-guard-debug (x y)
  (declare (xargs :guard (nat-< x y)
                  :split-types t
                  :verify-guards nil)
           (type (integer -3 *) x)
           (type integer y))
  (assert$ (< x (* 2 y))
           (cons x y)))

; Here is what we see printed by the verify-guards form below.

(defconst *f2-guard-debug-expected-proof-obligation*
  '(AND (IMPLIES (AND (EXTRA-INFO '(:GUARD (:TYPE F2-GUARD-DEBUG))
                                  '(INSIST (AND (AND (INTEGERP X) (<= -3 X))
                                                (INTEGERP Y))))
                      (NAT-< X Y))
                 (AND (AND (INTEGERP X) (<= -3 X))
                      (INTEGERP Y)))
        (IMPLIES (AND (EXTRA-INFO '(:GUARD (:BODY F2-GUARD-DEBUG))
                                  '(< X (* 2 Y)))
                      (NAT-< X Y))
                 (RATIONALP X))
        (IMPLIES (AND (EXTRA-INFO '(:GUARD (:BODY F2-GUARD-DEBUG))
                                  '(* 2 Y))
                      (NAT-< X Y))
                 (ACL2-NUMBERP Y))
        (IMPLIES (AND (EXTRA-INFO '(:GUARD (:BODY F2-GUARD-DEBUG))
                                  '(< X (* 2 Y)))
                      (NAT-< X Y))
                 (RATIONALP (* 2 Y)))
        (IMPLIES (AND (EXTRA-INFO '(:GUARD (:BODY F2-GUARD-DEBUG))
                                  '(ILLEGAL 'ASSERT$
                                            "Assertion failed:~%~x0"
                                            (LIST (CONS #\0
                                                        '(ASSERT$
                                                          (< X (* 2 Y))
                                                          (CONS X Y))))))
                      (NAT-< X Y))
                 (< X (* 2 Y)))))

; Now we check that the proof obligation is indeed what we have claimed it is,
; above.

(must-eval-to-t
 (mv-let
  (erp val)
  (guard-obligation 'f2-guard-debug t t t 'top-level state)
  (value
   (and
    (not erp)
    (equal (prettyify-clause-set (cadr val) nil (w state))
           *f2-guard-debug-expected-proof-obligation*)))))

; Finally, we verify guards for f2-guard-debug.

(verify-guards f2-guard-debug
               :guard-debug t)

; And now we check that the guard really does NOT incorporate the formulas
; generated by the type declarations.

(assert-event (equal (guard 'f2-guard-debug nil (w state))
                     '(NAT-< X Y)))

; It is illegal to specify contradictory values for :split types in the same
; defun form.

(must-fail
 (defun f2-duplicate-keyword (x y)
   (declare (xargs :guard (nat-< x y)
                   :split-types t)
            (type (integer -3 *) x)
            (type integer y))
   (declare (xargs :split-types nil))
   (assert$ (< x (* 2 y))
            (cons x y))))

; However, we can provide :split-types t and :split-types nil to different
; defun forms within a mutual-recursion.

(mutual-recursion
 (defun evenlp (x)
   (declare (type (satisfies true-listp) x))
   (declare (xargs :split-types nil))
   (if (endp x) t (oddlp (cdr x))))
 (defun oddlp (x)
   (declare (xargs :guard (true-listp x)
                   :split-types t))
   (declare (type (or cons null) x))
   (if (endp x) nil (evenlp (cdr x)))))

(assert-event (equal (guard 'evenlp nil (w state))
                     '(TRUE-LISTP X)))
(assert-event (equal (guard 'oddlp nil (w state))
                     '(TRUE-LISTP X)))

; The following example is exactly like the immediately preceding one, except
; this time we leave implicit the declaration that :split-types is nil.

(mutual-recursion
 (defun evenlp2 (x)
   (declare (type (satisfies true-listp) x))
   (if (endp x) t (oddlp2 (cdr x))))
 (defun oddlp2 (x)
   (declare (xargs :guard (true-listp x)
                   :split-types t))
   (declare (type (or cons null) x))
   (if (endp x) nil (evenlp2 (cdr x)))))

(assert-event (equal (guard 'evenlp2 nil (w state))
                     '(TRUE-LISTP X)))
(assert-event (equal (guard 'oddlp2 nil (w state))
                     '(TRUE-LISTP X)))

; The following fails because the explicit :guard does not imply (<= x 10).

(must-fail
 (defun f3 (x y)
   (declare (xargs :guard (and (nat-< x y)
                               (< x 30))))
   (declare (type integer x))
   (declare (type (rational -10 10) x))
   (declare (xargs :split-types t))
   (cons x y)))

; But by changing the type declaration to allow x to go up to 50 instead of 10,
; we succeed.

(defun f3 (x y)
   (declare (xargs :guard (and (nat-< x y)
                               (< x 30))))
   (declare (type integer x))
   (declare (type (rational -10 50) x))
   (declare (xargs :split-types t))
   (cons x y))

; Next we check that if a type is declared, even a trivial one, then by default
; -- i.e., when (default-verify-guards-eagerness (w state)) is 1; see :DOC
; set-verify-guards-eagerness -- that type declaration is enough reason to
; verify guards, even if :split-types t tells us that the type is not part of
; the guard.

(defun f4 (x)
  (declare (xargs :split-types t)
           (type t x))
  x)

(assert-event (equal (symbol-class 'f4 (w state))
                     :common-lisp-compliant))

; The key idea of :split-types is that if its value is t, then the guard does
; not incorporate the type declarations and moreover, for guard verification
; the terms derived from the type declarations must be proved from the guard.
; The next two examples thus fail, since the type is not derivable from the
; (implicit) guard of T.  These two failures differ only in that one has a
; single declare form and the other has two declare forms; that distinction is
; irrelevant.  Finally, we show that the definition admits if :split-types is
; nil.

(must-fail
 (defun my-len-try1 (x)
   (declare (xargs :split-types t)
            (type (satisfies true-listp) x))
   (if (consp x) (1+ (my-len-try1 (cdr x))) 0)))

(must-fail
 (defun my-len-try2 (x)
   (declare (xargs :split-types t))
   (declare (type (satisfies true-listp) x))
   (if (consp x) (1+ (my-len-try2 (cdr x))) 0)))

(defun my-len (x)
  (declare (xargs :split-types nil))
  (declare (type (satisfies true-listp) x))
  (if (consp x) (1+ (my-len (cdr x))) 0))

; Redundancy requires the same :split-types value in each case.

(must-fail
 (defun my-len (x)
   (declare (xargs :split-types t))
   (declare (type (satisfies true-listp) x))
   (if (consp x) (1+ (my-len (cdr x))) 0)))

; Redundancy allows :split-types to be nil in one definition and omitted in the
; other.

(defun my-len (x)
  (declare (type (satisfies true-listp) x))
  (if (consp x) (1+ (my-len (cdr x))) 0))

(defun my-len (x)
  (declare (xargs :split-types nil))
  (declare (type (satisfies true-listp) x))
  (declare (xargs :split-types nil))
  (if (consp x) (1+ (my-len (cdr x))) 0))

; Redundancy checking catches a proposed definition with illegal ambiguity on
; :split-types.

(must-fail
 (defun my-len (x)
   (declare (xargs :split-types nil))
   (declare (type (satisfies true-listp) x))
   (declare (xargs :split-types t))
   (if (consp x) (1+ (my-len (cdr x))) 0)))

; Redundancy checking catches a proposed definition with an illegal value for
; :split-types.

(must-fail
 (defun my-len (x)
   (declare (xargs :split-types 17))
   (declare (type (satisfies true-listp) x))
   (if (consp x) (1+ (my-len (cdr x))) 0)))

(defun f5 (x)
  (declare (xargs :split-types t))
  x)

; Redundant.

(defun f5 (x)
  (declare (xargs :split-types t))
  (declare (xargs :split-types t))
  x)

; Not redundant (and illegal).

(must-fail
 (defun f5 (x)
   (declare (xargs :split-types t))
   (declare (xargs :split-types nil))
   x))

; Presence of :split-types does not trigger guard verification by default (need
; :guard, type, or :stobj declaration).

(defun f6 (x)
  (declare (xargs :split-types t))
  x)

(assert-event (equal (symbol-class 'f6 (w state))
                     :ideal)) ; not guard-verified