1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
(in-package "ACL2")
(include-book "py86")
(include-book "../y86/y86-asm")
(include-book "py86-mem-init")
(defun fib (n)
(declare (xargs :guard (natp n)))
(cond ((zp n) 0)
((eql n 1) 1)
(t (+ (fib (- n 1)) (fib (- n 2))))))
(defconst *fib-source*
'(fib
;; Subroutine setup
(pushl %ebp) ; 0: Save superior frame pointer
(rrmovl %esp %ebp) ; 2: Set frame pointer
(pushl %ebx) ; 4: Save callee-save registers on stack
(pushl %esi) ; 6:
(mrmovl 8(%ebp) %ebx) ; 8: Get <N>
;; Zero test
(xorl %eax %eax) ; 14: %eax := 0
(andl %ebx %ebx) ; 16: Set flags
(jle fib_leave) ; 18: Return 0, if <N> <= 0
;; One test
(irmovl 1 %eax) ; 23: %eax := 1
(rrmovl %ebx %ecx) ; 29: %ecx := <N>
(subl %eax %ecx) ; 31: %ecx := <N> - 1
(je fib_leave) ; 33: Return 1, if <N> == 0
;; Push (- N 1) on stack for recursive FIB call
(pushl %ecx) ; 38: Push (<N> - 1)
fib-1
(call fib) ; 40: Recursively call fib(<N> - 1)
(popl %ecx) ; 45: Restore stack pointer
(rrmovl %eax %esi) ; 47: Save fib(<N> - 1)
(irmovl 2 %ecx) ; 49:
(subl %ecx %ebx) ; 55: <N> - 2
;; Push (- N 2) on stack for recursive FIB call
(pushl %ebx) ; 57: Push (<N> - 2)
fib-2
(call fib) ; 59: Recursively call fib(<N> - 2)
(popl %ecx) ; 64: Restore stack pointer
(addl %esi %eax) ; 66: fib(<N> - 2) + fib(<N> - 1)
;; Subroutine leave
fib_leave
(popl %esi) ; 68: Restore callee-save register
(popl %ebx) ; 70: Restore callee-save register
(rrmovl %ebp %esp) ; 72: Restore stack pointer
(popl %ebp) ; 74: Restore previous frame pointer
(ret) ; 76: Subroutine return
end-of-code
;; Main program
(align 16) ; 80: Align to 16-byte address
main ; 80: "main" program
(irmovl stack %esp) ; 80: Initialize stack pointer (%esp)
(rrmovl %esp %ebp) ; 86: Initialize frame pointer (%ebp)
(irmovl 6 %eax) ; 88: <N>: fibonacci( <N> )
(pushl %eax) ; 94: Push argument on stack
call-fib
(call fib) ; 96: Call Fibonacci subroutine
return-from-fib
(popl %ebx) ; 101: Restore local stack position
(halt) ; 103: Halt
;; Stack ; ;
(pos 8192) ; 8192: Assemble position
stack ; 8192: Thus, "stack" has value 8192
))
(defconst *fib-start-location*
0)
(defconst *fib-symbol-table*
(y86-symbol-table *fib-source* *fib-start-location* nil))
(defconst *fib-binary*
(hons-shrink-alist
(y86-asm *fib-source* *fib-start-location* *fib-symbol-table* 'fib)
'shrunk-sum-1-to-n))
(defun fib-count (n)
; Return the number of steps taken by y86, starting at a call of FIB and ending
; just after corresponding (ret) in the FIB routine.
(declare (xargs :guard (natp n)
:ruler-extenders :all))
(1+ ; (for the call instr)
(cond ((zp n) 13) ; 8 (prelude) + 5 (postlude, to fib_leave)
((eql n 1) 17) ; 8 + 4 (extra prelude when N = 1) + 5
(t (+ 13 ; 8 (prelude)
(fib-count (- n 1))
5
(fib-count (- n 2))
7)))))
(defun fib-init-x86-32 (n esp eip)
; N is our formal, esp is the stack pointer just before (call fib), and eip
; position of the (call fib) instruction. It's important that addresses from
; *fib-binary* don't include esp, and in fact there's sufficient separation to
; let the stack grow as fib is executed without smashing the fib code.
(declare (xargs :guard (and (n32p n)
(n32p esp)
(n32p eip))))
(init-y86-state nil
eip
`((:esp . ,esp))
nil
*fib-binary*
(wm32 esp n (create-x86-32)) ; n is on the top of the stack
))
(defun mem-segment-p (alist x86-32)
; This function is only appropriate if alist doesn't have duplicates --
; otherwise we are making requirements on shadowed entries. We know that alist
; doesn't have duplicates if it results from a call of hons-shrink-alist.
(declare (xargs :guard (x86-32p x86-32)))
(cond ((atom alist) t)
(t (and (consp (car alist))
(n32p (caar alist))
(equal (rm08 (caar alist) x86-32)
(cdar alist))
(mem-segment-p (cdr alist) x86-32)))))
(defun fib-stack-max-bytes (n)
; The maximum number of bytes pushed onto the stack by calls of fib
(declare (xargs :guard (natp n)))
(* 4 ; convert dwords (computed just below) to bytes
(+ 1 ; for the dword already at tos (i.e., the parameter of fib)
(case n
((0 1) 4)
(otherwise (- (* 5 n)
1))))))
(defun poised-at-fib-n (n x86-32)
(declare (xargs :guard (and (n32p n)
(x86-32p x86-32))))
(let ((esp (rgfi *mr-esp* x86-32)))
(and (n32p (+ 3 esp))
;; call has not yet taken place (next step is the call)
(equal n (rm32 esp x86-32))
;; We check that the stack necessary won't overwrite the
;; code. The nesting of calls is at most n, and for each
;; stack frame we push four doublewords.
(<= (cdr (assoc-eq 'end-of-code ; just past the return
*fib-symbol-table*))
(- esp ; subtract max number of bytes to be pushed
(fib-stack-max-bytes n))))))
(defun poised-at-fib-base (eip x86-32)
(declare (xargs :guard (and (x86-32p x86-32)
(n32p eip))))
(and (mem-segment-p *fib-binary* x86-32)
(equal (eip x86-32) eip)))
(defun poised-at-fib (n eip x86-32)
(declare (xargs :guard (and (n32p n)
(n32p eip)
(x86-32p x86-32))))
(and (poised-at-fib-base eip x86-32)
(poised-at-fib-n n x86-32)))
(defthm x86-32p-y86-step
(implies (x86-32p x86-32)
(x86-32p (y86-step x86-32)))
:hints (("Goal" :in-theory (enable y86-step))))
(defun reduce-fib (x86-32)
(declare (xargs :guard (x86-32p x86-32)))
(let ((esp (rgfi *mr-esp* x86-32)))
(fib-init-x86-32 (rm32 esp x86-32)
esp
(cdr (assoc-eq 'call-fib
*fib-symbol-table*)))))
; Let's do a sanity check before investing proof effort.
#||
(let* ((n 10)
(esp 9000)
(eip (cdr (assoc-eq 'call-fib
*fib-symbol-table*)))
(x86-32 (fib-init-x86-32 n esp eip))
(count (fib-count n)))
(list :x86-32p (x86-32p x86-32)
:initial-eip (eip x86-32)
:initial-esp (rgfi *mr-esp* x86-32)
:initial-tos (rm32 (rgfi *mr-esp* x86-32) x86-32)
:poised (poised-at-fib n eip x86-32)
(let ((x86-32 (y86 x86-32 count)))
(list :eax (rgfi *mr-eax* x86-32)
:final-eip (eip x86-32)
:functional (fib n)))))
||#
; Start proof of y86-fib-correct-up-to-6-reduced.
(local (include-book "centaur/gl/gl" :dir :system))
(defun disjoint-intervals-p (lower1 upper1 lower2 upper2)
; Test if [lower1,upper1] and [lower2,upper2] are indeed closed intervals with
; natural number bounds such that lower1 <= upper1 and lower2 <= upper2, and
; that these intervals are disjoint.
(declare (xargs :guard t))
(and (n32p lower1)
(n32p upper1)
(<= lower1 upper1)
(n32p lower2)
(n32p upper2)
(<= lower2 upper2)
(or (< upper1 lower2)
(< upper2 lower1))))
(defun f-stack-okp (n esp)
(declare (xargs :guard (and (n32p n)
(n32p esp)
(n32p (+ 3 esp)))))
(let* ((max-bytes (fib-stack-max-bytes n))
(min-tos (- esp max-bytes))
(start-of-fib (cdr (assoc-eq 'fib
*fib-symbol-table*)))
(end-of-fib (cdr (assoc-eq 'end-of-code ; just past the return
*fib-symbol-table*)))
(start-of-call (cdr (assoc-eq 'call-fib
*fib-symbol-table*)))
(end-of-call (+ 5 start-of-call)))
(and (disjoint-intervals-p min-tos esp
start-of-fib end-of-fib)
(disjoint-intervals-p min-tos esp
start-of-call end-of-call))))
(local
(def-gl-thm y86-fib-correct-up-to-3-reduced-symsim
; We can go up to 4 but it takes about 12 to 19 seconds on a fast MacBook Pro.
; !! We can get up to (< n 7) in 5 or 6 seconds and (< n 8) in 15 seconds, by
; let-binding the esp to (cdr (assoc-eq 'stack *fib-symbol-table*)). But then
; we will need a notion of reduction that allows translating memory addresses,
; so that we correspond 8192 in the reduced state with an arbitrary legal stack
; in the given state.
:hyp (and (natp n)
(< n 3)
(n32p esp)
(n32p (+ esp 3))
(f-stack-okp n esp))
:concl (let* ((eip (cdr (assoc-eq 'call-fib
*fib-symbol-table*)))
(x86-32 (fib-init-x86-32 n esp eip))
(x86-32 (y86 x86-32 (fib-count n))))
(and (equal (rgfi *mr-eax* x86-32)
(fib n))
(equal (eip x86-32)
(cdr (assoc-eq 'return-from-fib
*fib-symbol-table*)))))
:g-bindings
`((n (:g-number ,(gl-int 0 1 4)))
(esp (:g-number ,(gl-int 4 1 33))))
:rule-classes nil))
(defthm y86-fib-correct-up-to-3-reduced
(let ((eip (cdr (assoc-eq 'call-fib *fib-symbol-table*)))
(esp (rgfi *mr-esp* x86-32)))
(implies (and (natp n)
(< n 3)
(n32p esp)
(n32p (+ esp 3))
(f-stack-okp n esp)
(x86-32p x86-32)
; Perhaps we could drop the following hypothesis, but since it's available and
; could be needed in some other examples (say, because there are restrictions
; on n), we leave it here.
(poised-at-fib n eip x86-32))
(let* ((x86-32 (reduce-fib x86-32))
(x86-32 (y86 x86-32 (fib-count n))))
(and (equal (rgfi *mr-eax* x86-32)
(fib n))
(equal (eip x86-32)
(cdr (assoc-eq 'return-from-fib
*fib-symbol-table*)))))))
:hints (("Goal"
:use ((:instance y86-fib-correct-up-to-3-reduced-symsim
(esp (rgfi *mr-esp* x86-32))))
:in-theory (union-theories '(reduce-fib
poised-at-fib
poised-at-fib-n)
(theory 'minimal-theory))))
:rule-classes nil)
;;; !! Need to define fib-equiv-p in order to eliminate skip-proofs below.
(defstub fib-equiv-p (a b) t)
(skip-proofs
(defthm fib-equiv-p-is-invariant-step
(implies (and (x86-32p x86-32-prime)
(x86-32p x86-32)
(fib-equiv-p x86-32-prime x86-32))
(fib-equiv-p (y86-step x86-32-prime)
(y86-step x86-32)))))
; so by induction:
(defun fib-equiv-p-is-invariant-induction (x y n)
(if (zp n)
(list x y)
(fib-equiv-p-is-invariant-induction (y86-step x)
(y86-step y)
(1- n))))
(skip-proofs
(defthm fib-equiv-p-implies-same-ms
(implies (and (x86-32p x)
(x86-32p y)
(not (equal (ms x) (ms y))))
(not (fib-equiv-p x y)))))
(defthm fib-equiv-p-is-invariant
(implies (and (x86-32p x86-32-prime)
(x86-32p x86-32)
(fib-equiv-p x86-32-prime x86-32)
(natp k))
(fib-equiv-p (y86 x86-32-prime k)
(y86 x86-32 k)))
:hints (("Goal" :in-theory (enable y86)
:induct (fib-equiv-p-is-invariant-induction
x86-32-prime x86-32 k))))
; So rgfi-0-y86-reduce-fib kind of follows from the above, using the following
; to relieve the third hyp above.
(skip-proofs
(defthm fib-equiv-p-reduce-fib
(let ((eip (cdr (assoc-eq 'call-fib *fib-symbol-table*))))
(implies (and (x86-32p x86-32)
(poised-at-fib-base eip x86-32))
(fib-equiv-p (reduce-fib x86-32)
x86-32)))))
(skip-proofs
(defthm fib-equiv-p-implies-same-eax
(implies (and (x86-32p x86-32)
(x86-32p x86-32-prime)
(fib-equiv-p x86-32-prime x86-32)
(equal (eip x86-32-prime)
(cdr (assoc-eq 'return-from-fib *fib-symbol-table*))))
(equal (rgfi *mr-eax* x86-32)
(rgfi *mr-eax* x86-32-prime)))
:rule-classes nil))
;;; !! Consider not disabling the following in the first place, in
;;; py86-state.lisp. Otherwise we need 5^2 rules for dealing with these.
;;; (in-theory (enable rgfi !rgfi eip !eip flg !flg memi !memi ms !ms))
(defthm x86-32p-reduce-fib
(implies (x86-32p x86-32)
(x86-32p (reduce-fib x86-32)))
:hints (("Goal" :in-theory (enable init-y86-state
y86-alu-results-store-flgs
m86-reg-updates
x86-32p rgfp))
("[1]Goal" :in-theory (enable x86-32p))))
(defthm rgfi-0-y86-reduce-fib
(implies (and (x86-32p x86-32)
(natp n)
(< n 3)
(n32p (+ (rgfi *mr-esp* x86-32) 3))
(f-stack-okp n (rgfi *mr-esp* x86-32))
(let ((eip (cdr (assoc-eq 'call-fib *fib-symbol-table*))))
(poised-at-fib n eip x86-32)))
(equal (rgfi *mr-eax* (y86 (reduce-fib x86-32) (fib-count n)))
(rgfi *mr-eax* (y86 x86-32 (fib-count n)))))
:hints (("Goal"
:use ((:instance fib-equiv-p-implies-same-eax
(x86-32-prime (y86 (reduce-fib x86-32) (fib-count n)))
(x86-32 (y86 x86-32 (fib-count n))))
(:instance fib-equiv-p-is-invariant
(k (fib-count n))
(x86-32-prime (reduce-fib x86-32)))
(:instance y86-fib-correct-up-to-3-reduced))
:in-theory (union-theories '(fib-equiv-p-reduce-fib
poised-at-fib
natp-rgfi
(:linear rgfi-less-than-expt-2-32)
x86-32p-reduce-fib
y86-preserves-x86-32p
(:type-prescription fib-count)
natp-compound-recognizer
(assoc-equal)
(natp))
(theory 'minimal-theory)))))
(defthm y86-fib-correct-up-to-3
(implies (and (x86-32p x86-32)
(natp n)
(< n 3)
(n32p (+ (rgfi *mr-esp* x86-32) 3))
(f-stack-okp n (rgfi *mr-esp* x86-32))
(let ((eip (cdr (assoc-eq 'call-fib *fib-symbol-table*))))
(poised-at-fib n eip x86-32)))
(let ((x86-32 (y86 x86-32 (fib-count n))))
(equal (rgfi *mr-eax* x86-32)
(fib n))))
:hints (("Goal" :use y86-fib-correct-up-to-3-reduced
:in-theory (union-theories '(rgfi-0-y86-reduce-fib
poised-at-fib
natp-rgfi)
(theory 'minimal-theory)))))
|