1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
(in-package "ACL2")
(include-book "std/util/bstar" :dir :system)
;;; From x86-state.lisp
; Increase memory for X86 memory.
(include-book "centaur/misc/memory-mgmt-logic" :dir :system)
(value-triple (set-max-mem (* 6 (expt 2 30))))
; Here we include the GL book to help verify various arithmetic facts.
(local (include-book "centaur/gl/gl" :dir :system))
(defun gl-int (start by count)
(declare (xargs :guard (and (natp start)
(natp by)
(natp count))))
(if (zp count)
nil
(cons start
(gl-int (+ by start) by (1- count)))))
;;; From y86.lisp
(include-book "../common/misc-events")
(include-book "../common/operations")
(include-book "../common/constants")
;;;
(defun lookup (i lst default)
(declare (xargs :guard (and (eqlablep i)
(eqlable-alistp lst))))
(let ((pair (hons-get i lst)))
(if pair
(cdr pair)
; Use value of :initially if we don't find the pair.
default)))
(defun rgfp (x)
(declare (xargs :guard t :verify-guards t))
(if (atom x)
(equal x nil)
(and (unsigned-byte-p 32 (car x))
(rgfp (cdr x)))))
(defun nat-listp (l)
(declare (xargs :guard t))
(cond ((atom l)
(eq l nil))
(t (and (natp (car l))
(nat-listp (cdr l))))))
(defthm nat-listp-forward-to-integer-listp
(implies (nat-listp x)
(integer-listp x))
:rule-classes :forward-chaining)
(defthm rgfp-forward-to-nat-listp
(implies (rgfp x)
(nat-listp x))
:rule-classes :forward-chaining)
(defun eipp (x)
(declare (xargs :guard t :verify-guards t))
(unsigned-byte-p 32 x))
(defun flgp (x)
(declare (xargs :guard t :verify-guards t))
(unsigned-byte-p 32 x))
(defun memp (x)
(declare (xargs :guard t :verify-guards t))
(if (atom x)
(equal x nil)
(and (consp (car x))
(natp (caar x))
(unsigned-byte-p 32 (cdar x))
(memp (cdr x)))))
(defthm memp-forward-to-eqlable-alistp
(implies (memp x)
(eqlable-alistp x))
:rule-classes :forward-chaining)
(defun msp (x)
(declare (xargs :guard t))
(declare (ignore x))
t)
(defun x86-32p (x86-32)
(declare (xargs :guard t :verify-guards t))
(and (true-listp x86-32)
(= (length x86-32) 5)
(rgfp (nth 0 x86-32))
(equal (len (nth 0 x86-32)) 8)
(eipp (nth 1 x86-32))
(flgp (nth 2 x86-32))
(memp (nth 3 x86-32))
(msp (nth 4 x86-32))
t))
(defun create-x86-32 nil
(declare (xargs :guard t :verify-guards t))
(list (make-list 8 :initial-element '0)
'0
'0
nil
nil))
(defun rgf-length (x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t)
(ignore x86-32))
8)
(defun resize-rgf (i x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t)
(ignore i))
(prog2$
(hard-error
'resize-rgf
"the array field corresponding to accessor ~x0 of ~
stobj ~x1 was not declared :resizable t. ~
therefore, it is illegal to resize this array."
(list (cons #\0 'rgfi)
(cons #\1 'x86-32)))
x86-32))
(defun rgfi (i x86-32)
(declare (xargs :guard (and (x86-32p x86-32)
(integerp i)
(<= 0 i)
(< i (rgf-length x86-32)))
:verify-guards t))
(nth i (nth 0 x86-32)))
(defun !rgfi (i v x86-32)
(declare (xargs :guard (and (x86-32p x86-32)
(integerp i)
(<= 0 i)
(< i (rgf-length x86-32))
(unsigned-byte-p 32 v))
:verify-guards t))
(update-nth-array 0 i v x86-32))
(defun eip (x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t))
(nth 1 x86-32))
(defun !eip (v x86-32)
(declare (xargs :guard (and (unsigned-byte-p 32 v)
(x86-32p x86-32))
:verify-guards t))
(update-nth 1 v x86-32))
(defun flg (x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t))
(nth 2 x86-32))
(defun !flg (v x86-32)
(declare (xargs :guard (and (unsigned-byte-p 32 v)
(x86-32p x86-32))
:verify-guards t))
(update-nth 2 v x86-32))
#||
(defun mem-length (x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t)
(ignore x86-32))
#x40000000)
||#
(defun resize-mem (i x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t)
(ignore i))
(prog2$
(hard-error
'resize-mem
"the array field corresponding to accessor ~x0 of ~
stobj ~x1 was not declared :resizable t. ~
therefore, it is illegal to resize this array."
(list (cons #\0 'memi)
(cons #\1 'x86-32)))
x86-32))
(defun memi (i x86-32)
(declare (xargs :guard (and (x86-32p x86-32)
(integerp i)
(<= 0 i))
:verify-guards t))
(lookup i
(nth 3 x86-32)
; Use value of :initially if we don't find the pair:
0))
(defun !memi (i v x86-32)
(declare (xargs :guard (and (x86-32p x86-32)
(integerp i)
(<= 0 i)
(unsigned-byte-p 32 v))
:verify-guards t))
(update-nth 3
(hons-acons i v (nth 3 x86-32))
x86-32))
(defun ms (x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t))
(nth 4 x86-32))
(defun !ms (v x86-32)
(declare (xargs :guard (x86-32p x86-32)
:verify-guards t))
(update-nth 4 v x86-32))
(defconst *rgfi* 0)
(defconst *eip* 1)
(defconst *flg* 2)
(defconst *memi* 3)
(defconst *ms* 4)
; Theorems from ../common/x86-state.lisp
; We first deal with the STOBJ read lemmas
; RGF read lemmas
(defthm natp-nth-of-rgf
(implies (and (rgfp x)
(integerp i)
(<= 0 i)
(< i (len x)))
(and (integerp (nth i x))
(<= 0 (nth i x))))
:rule-classes :type-prescription
:hints (("Goal" :in-theory (e/d (nth) ()))))
(defthm nth-of-rgf-<=4294967296
(implies (and (rgfp x)
(integerp i)
(<= 0 i)
(< i (len x)))
(< (nth i x) 4294967296))
:rule-classes :linear
:hints (("Goal" :in-theory (e/d (nth) ()))))
(defthm natp-rgfi
(implies (and (force (x86-32p x86-32))
(force (n03p i)))
(and (integerp (rgfi i x86-32))
(<= 0 (rgfi i x86-32))))
:rule-classes :type-prescription)
(defthm rgfi-less-than-expt-2-32
(implies (and (x86-32p x86-32)
(n03p i))
(< (rgfi i x86-32) 4294967296))
:rule-classes :linear)
; EIP read lemmas
(defthm natp-eip
(implies (force (x86-32p x86-32))
(and (integerp (eip x86-32))
(<= 0 (eip x86-32))))
:rule-classes :type-prescription)
(defthm eip-less-than-expt-2-32
(implies (x86-32p x86-32)
(< (eip x86-32) 4294967296))
:rule-classes :linear)
; FLG read lemmas
(defthm natp-flg
(implies (force (x86-32p x86-32))
(and (integerp (flg x86-32))
(<= 0 (flg x86-32))))
:rule-classes :type-prescription)
(defthm flg-less-than-expt-2-32
(implies (x86-32p x86-32)
(< (flg x86-32) 4294967296))
:rule-classes :linear)
; MEM read lemmas
(defthm natp-lookup
(implies (and (memp x)
(natp default))
(and (integerp (lookup i x default))
(<= 0 (lookup i x default))))
:rule-classes :type-prescription)
(defthm lookup-is-unsigned-byte-p-32
(implies (and (memp x)
(unsigned-byte-p 32 default))
(< (lookup i x default) #x100000000))
:rule-classes :linear
:hints (("Goal" :in-theory (e/d (nth) ()))))
(in-theory (disable lookup))
(defthm natp-memi-when-n30p-addr
(implies (and (force (x86-32p x86-32))
(force (n30p addr)))
(and (integerp (memi addr x86-32))
(<= 0 (memi addr x86-32))))
:rule-classes (:rewrite :type-prescription))
(defthm memi-less-than-expt-2-32
(implies (and (x86-32p x86-32)
(force (n30p addr)))
(< (memi addr x86-32) #x100000000))
:rule-classes :linear)
(encapsulate
()
(local
(def-gl-thm n32p-ash--2-is-n30p-lemma
:hyp (n32p x)
:concl (n30p (ash x -2))
:g-bindings
`((x (:g-number ,(gl-int 0 1 33))))))
(defthm n32p-ash--2-is-n30p
(implies (n32p x)
(n30p (ash x -2)))
:hints (("Goal" :by n32p-ash--2-is-n30p-lemma))
:rule-classes ((:type-prescription
:corollary (implies (n32p x)
(natp (ash x -2))))
(:linear
:corollary (implies (n32p x)
(< (ash x -2) 1073741824))))))
; We wonder if the two lemmas about !xxx would be better as
; :FORWARD-CHAINING rules (or, as both :REWRITE and :FORWARD-CHAINING
; rules), using *MEM-SIZE-IN-BYTES* and *REG-SIZE-IN-DWRDS* in the
; hypotheses instead of LEN.
(defthm length-is-len-when-not-stringp
(implies (not (stringp x))
(equal (length x)
(len x)))
:hints (("Goal" :in-theory (e/d (length) ()))))
; RGF update lemmas
(defthm rgfp-update-nth
(implies (and (rgfp x)
(integerp i)
(<= 0 i)
(< i (len x))
(n32p v))
(rgfp (update-nth i v x))))
(defthm x86-32p-!rgfi-n03p
(implies (and (x86-32p x86-32)
(n03p i)
(n32p v))
(x86-32p (!rgfi i v x86-32))))
; EIP update lemma
(defthm x86-32p-!eip
(implies (and (x86-32p x86-32)
(n32p v))
(x86-32p (!eip v x86-32))))
; EFLAGS update lemma
(defthm x86-32p-!flg
(implies (and (x86-32p x86-32)
(n32p v))
(x86-32p (!flg v x86-32))))
; Memory update lemmas
(defthm memp-update-nth
(implies (and (memp x)
(integerp i)
(<= 0 i)
(n32p v))
(memp (hons-acons i v x))))
(defthm x86-32p-!memi-n30p
(implies (and (force (x86-32p x86-32))
(force (n30p i))
(force (n32p v)))
(x86-32p (!memi i v x86-32))))
; MS update lemma
(defthm x86-32p-!ms
(implies (x86-32p x86-32)
(x86-32p (!ms v x86-32))))
; Should we have this next group of lemmas? Probably not, but the
; first, for instance, one allows later lemma X86-32P-WMB-NO-WRAP (see
; below) to be proven.
(defthm len-x86-32-rgf
(implies (x86-32p x86-32)
(equal (len (nth *rgfi* x86-32))
*m86-32-reg-names-len*)))
#||
(defthm len-x86-32-mem
(implies (x86-32p x86-32)
(equal (len (nth *memi* x86-32))
*mem-size-in-dwords*)))
||#
(defthm x86-32p-properties
(implies (x86-32p x86-32)
(and (true-listp x86-32)
(equal (len x86-32) 5)
(rgfp (nth 0 x86-32))
(equal (len (nth 0 x86-32))
*m86-32-reg-names-len*)
(eipp (nth 1 x86-32))
(flgp (nth 2 x86-32))
(memp (nth 3 x86-32))
;; (equal (len (nth 3 x86-32)) *mem-size-in-dwords*)
(msp (nth 4 x86-32))
))
:rule-classes :forward-chaining)
; Additional lemmas to help with later guard proofs.
; Hopefully, we have proven all the facts we need about the X86
; machine state.
(in-theory (disable x86-32p
rgfp rgfi !rgfi
eipp eip !eip
flgp flg !flg
memp memi !memi
msp ms !ms
))
; Read memory byte and memory double-word functions
(encapsulate
()
(local
(def-gl-thm ash-logand-addr-3-is-integerp-less-or-equal-24
:hyp (n32p addr)
:concl (<= (ash (logand addr 3) 3) 24)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33))))))
(local
(def-gl-thm ash-memi-ash-logand-addr
:hyp (and (n32p mem-value)
(n32p addr))
:concl (< (ash mem-value (- (ash (logand addr 3) 3)))
4294967296)
:rule-classes :linear
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(mem-value (:g-number ,(gl-int 33 1 33))))))
(defun rm08 (addr x86-32)
(declare (xargs :guard (and (n32p addr)
(x86-32p x86-32))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2))
(dword (memi dword-addr x86-32))
(shift-amount (ash byte-num 3))
;; Next form causes (callq (@ .SPBUILTIN-ASH)).
(shifted-word (ash dword (- shift-amount))))
(declare (type (unsigned-byte 2) byte-num)
(type (unsigned-byte 30) dword-addr)
(type (unsigned-byte 32) dword shifted-word)
(type (integer 0 24) shift-amount))
(n08 shifted-word)))
(defun rm16 (addr x86-32)
(declare (xargs :guard (and (n32p addr)
(x86-32p x86-32))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2))
(dword (memi dword-addr x86-32)))
(declare (type (unsigned-byte 2) byte-num)
(type (unsigned-byte 30) dword-addr)
(type (unsigned-byte 32) dword))
(if (= byte-num 3)
;; Memory "wrap"
(let* ((byte0 (rm08 addr x86-32))
(byte1 (rm08 (n32+ addr 1) x86-32)))
(declare (type (unsigned-byte 8) byte0 byte1))
(logior (ash byte1 8) byte0))
(logand (ash dword (- (ash byte-num 3)))
#xffff))))
(local (defthm integerp-+
(implies (and (integerp x)
(integerp y))
(integerp (+ x y)))))
(local (defthm integerp-expt
(implies (natp x)
(integerp (expt 2 x)))))
(defun rm32 (addr x86-32)
(declare (xargs :guard (and (n32p addr)
(x86-32p x86-32))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2))
(dword (memi dword-addr x86-32)))
(declare (type (unsigned-byte 2) byte-num)
(type (unsigned-byte 30) dword-addr)
(type (unsigned-byte 32) dword))
(if (= byte-num 0)
dword
; Here is a picture in the case that byte-num is 3 (each "x" digit is hex):
; dword-addr+1 dword-addr ...... 0
; | |
; [next-dword] [dword]
; xxxxxxxx xxxxxxxx [from old mem]
; <> shift0 [ 8 in this example]
; <- -> shift1 [24 in this example]
; xx lo
; xxxxxx hi
(let* ((shift0 (ash (- 4 byte-num) 3))
(shift1 (ash byte-num 3))
(lo (ash dword (- shift1)))
(dword-addr+1 (n30+ dword-addr 1))
(next-dword (memi dword-addr+1 x86-32))
(hi (logand next-dword (- (ash 1 shift1)
1))))
(declare (type (unsigned-byte 32) lo hi))
(logior lo (ash hi shift0)))))))
(defthm natp-rm08
(implies (and (force (x86-32p x86-32))
(force (n32p addr)))
(and (integerp (rm08 addr x86-32))
(<= 0 (rm08 addr x86-32))))
:rule-classes :type-prescription)
(defthm rm08-less-than-expt-2-32
(implies (and (x86-32p x86-32)
(n32p addr))
(< (rm08 addr x86-32) 256))
:rule-classes :linear)
(in-theory (disable rm08))
(encapsulate
()
(local
(def-gl-thm logior-ash-bytes-<=-0
:hyp (and (n08p byte0)
(n08p byte1))
:concl
(<= 0 (logior (ash byte1 8) byte0))
:g-bindings
`((byte0 (:g-number ,(gl-int 0 1 9)))
(byte1 (:g-number ,(gl-int 9 1 9))))))
(local
(def-gl-thm logior-ash-bytes-<-4294967296
:hyp (and (n08p byte0)
(n08p byte1))
:concl
(< (logior (ash byte1 8) byte0)
65536)
:g-bindings
`((byte0 (:g-number ,(gl-int 0 1 9)))
(byte1 (:g-number ,(gl-int 9 1 9))))))
(defthm integerp-rm16
(implies (and (force (x86-32p x86-32))
(force (n32p addr)))
(and (integerp (rm16 addr x86-32))
(<= 0 (rm16 addr x86-32))))
:rule-classes :type-prescription)
(defthm rm16-less-than-expt-2-16
(implies (and (x86-32p x86-32)
(n32p addr))
(< (rm16 addr x86-32) 65536))
:rule-classes :linear))
(in-theory (disable rm16))
(defthm integerp-rm32
(implies (and (force (x86-32p x86-32))
(force (n32p addr)))
(and (integerp (rm32 addr x86-32))
(<= 0 (rm32 addr x86-32))))
:rule-classes :type-prescription)
(encapsulate
()
(local
(def-gl-thm hack
:hyp (and (n32p dword1)
(n32p dword2)
(integerp addr)
(<= 0 addr)
(< addr 4294967296)
(not (equal (logand addr 3) 0)))
:concl (< (logior (ash dword1
(- (ash (logand addr 3) 3)))
(ash (logand dword2
(+ -1 (ash 1 (ash (logand addr 3) 3))))
(ash (+ 4 (- (logand addr 3))) 3)))
4294967296)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(dword1 (:g-number ,(gl-int 33 1 33)))
(dword2 (:g-number ,(gl-int 66 1 33))))))
(defthm rm32-less-than-expt-2-32
(implies (and (x86-32p x86-32)
(n32p addr))
(< (rm32 addr x86-32) 4294967296))
:rule-classes :linear))
(in-theory (disable rm32))
; Write memory byte, memory double-word functions
(encapsulate
()
(local
(def-gl-thm ash-logand-addr-3-is-integerp-less-than-or-equal-24
:hyp (n32p addr)
:concl (<= (ash (logand addr 3) 3) 24)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33))))))
(local
(def-gl-thm ash-n08p-ash-logand-addr-3-3
:hyp (and (n32p addr)
(n08p byte))
:concl (< (ash byte (ash (logand addr 3) 3))
4294967296)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 33 1 9))))))
(local
(def-gl-thm word-to-write-equality
:hyp (and (n08p byte)
(n32p val)
(n32p addr))
:concl
(equal (logand (logior (logand (lognot (ash 255 (ash (logand addr 3) 3))) val)
(ash byte (ash (logand addr 3) 3)))
4294967295)
(logior (logand (lognot (ash 255 (ash (logand addr 3) 3)))
val)
(ash byte (ash (logand addr 3) 3))))
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 33 1 9)))
(val (:g-number ,(gl-int 42 1 33))))))
(local
(def-gl-thm natp-word-to-write
:hyp (and (n08p byte)
(n32p value)
(n32p addr))
:concl
(<= 0 (logior (logand (lognot (ash 255 (ash (logand addr 3) 3))) value)
(ash byte (ash (logand addr 3) 3))))
:rule-classes :linear
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 33 1 9)))
(value (:g-number ,(gl-int 42 1 33))))))
(local
(def-gl-thm word-to-write-equality-less-than-2^32
:hyp (and (n08p byte)
(n32p val)
(n32p addr))
:concl
(< (logior (logand (lognot (ash 255 (ash (logand addr 3) 3))) val)
(ash byte (ash (logand addr 3) 3)))
4294967296)
:rule-classes :linear
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 33 1 9)))
(val (:g-number ,(gl-int 42 1 33))))))
(local
(def-gl-thm another-logand-fact
:hyp (and (n32p word)
(n08p byte)
(n32p addr))
:concl
(<= 0 (logior (logand (+ -1 (- (ash 255 (ash (logand addr 3) 3)))) word)
(ash byte (ash (logand addr 3) 3))))
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 33 1 9)))
(word (:g-number ,(gl-int 42 1 33))))))
(defun wm08 (addr byte x86-32)
(declare (xargs :guard (and (n32p addr)
(n08p byte)
(x86-32p x86-32))
:guard-hints
(("Goal" :in-theory (e/d () (lognot))))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2))
(dword (memi dword-addr x86-32))
(mask #xFF)
(shift-amount (ash byte-num 3))
(byte-mask (ash mask shift-amount))
(dword-masked (logand (lognot byte-mask) dword))
(byte-to-write (ash byte shift-amount))
(dword-to-write (logior dword-masked byte-to-write)))
(declare (type (unsigned-byte 2) byte-num)
(type (integer 0 24) shift-amount)
(type (unsigned-byte 30) dword-addr)
(type (unsigned-byte 32)
byte-mask dword dword-masked byte-to-write dword-to-write))
(!memi dword-addr dword-to-write x86-32)))
(defthm x86-32p-wm08
(implies (and (x86-32p x86-32)
(n32p addr)
(n08p byte))
(x86-32p (wm08 addr byte x86-32)))))
(in-theory (disable wm08))
(encapsulate
()
(local
(def-gl-thm hack1
:hyp (and (n32p addr)
(not (equal (logand addr 3) 3)))
:concl (<= (ash (logand addr 3) 3) 16)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33))))
:rule-classes :linear))
(local
(def-gl-thm hack2
:hyp (and (n16p word)
(natp shift)
(<= shift 16))
:concl (< (ash word shift) 4294967296)
:g-bindings
`((word (:g-number ,(gl-int 0 1 17)))
(shift (:g-number ,(gl-int 17 1 6))))
:rule-classes :linear))
(local
(def-gl-thm logior-ash-bytes-<-4294967296
:hyp (and (n08p byte0)
(n08p byte1)
(n08p byte2)
(n08p byte3))
:concl
(< (logior (ash byte3 24) (ash byte2 16) (ash byte1 8) byte0)
4294967296)
:g-bindings
`((byte0 (:g-number ,(gl-int 0 1 9)))
(byte1 (:g-number ,(gl-int 9 1 9)))
(byte2 (:g-number ,(gl-int 18 1 9)))
(byte3 (:g-number ,(gl-int 27 1 9))))))
(defun wm16 (addr word x86-32)
(declare (xargs :guard (and (n32p addr)
(n16p word)
(x86-32p x86-32))
:guard-hints
(("Goal" :in-theory (e/d () (lognot))))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2)))
(declare (type (unsigned-byte 2) byte-num)
(type (unsigned-byte 30) dword-addr))
(if (= byte-num 3) ; memory wrap
(b* ((x86-32 (wm08 addr (n08 word ) x86-32))
(x86-32 (wm08 (n32+ addr 1) (n08 (ash word -8)) x86-32)))
x86-32)
(let* ((dword (memi dword-addr x86-32))
(mask #xFFFF)
(shift-amount (ash byte-num 3))
(byte-mask (ash mask shift-amount))
(dword-masked (logand (lognot byte-mask) dword))
(word-to-write (ash word shift-amount))
(dword-to-write (logior dword-masked word-to-write)))
(declare (type (integer 0 16) shift-amount)
(type (unsigned-byte 32)
byte-mask dword dword-masked word-to-write
dword-to-write))
(!memi dword-addr dword-to-write x86-32)))))
(defthm x86-32p-wm16
(implies (and (x86-32p x86-32)
(n32p addr)
(n16p word))
(x86-32p (wm16 addr word x86-32)))))
(in-theory (disable wm16))
; The next two hack lemmas are needed not only to admit wm32 (below), but also
; to prove x86-32p-wm32 (below).
(local
(def-gl-thm hack1
:hyp (and (n32p dword)
(n32p addr))
:concl
(< (ash (logand dword
(+ -1
(ash 1 (ash (+ 4 (- (logand addr 3))) 3))))
(ash (logand addr 3) 3))
4294967296)
:g-bindings
`((dword (:g-number ,(gl-int 0 1 33)))
(addr (:g-number ,(gl-int 34 1 33))))))
(local
(def-gl-thm hack2
:hyp (and (n32p dword)
(n32p addr))
:concl
(< (ash dword
(- (ash (+ 4 (- (logand addr 3))) 3)))
4294967296)
:g-bindings
`((dword (:g-number ,(gl-int 0 1 33)))
(addr (:g-number ,(gl-int 34 1 33))))))
(defun wm32 (addr dword x86-32)
(declare (xargs :guard (and (n32p addr)
(n32p dword)
(x86-32p x86-32))))
(declare (type (unsigned-byte 32) addr))
(let* ((byte-num (n02 addr))
(dword-addr (ash addr -2)))
(declare (type (integer 0 3) byte-num)
(type (unsigned-byte 30) dword-addr))
(if (= byte-num 0)
(!memi dword-addr dword x86-32)
; We write two dwords to memory: a lower dword obtained by replacing the upper
; bits of the original lower dword, and similarly, an upper dword obtained by
; replacing the lower bits of the original upper dword.
; Here is a picture in the case that byte-num is 3 (each "x" digit is hex):
; dword-addr+1 dword-addr ...... 0
; | |
; xxxxxxxx xxxxxxxx [from old mem]
; xxxxxx xx dword
; <> shift0 [ 8 in this example]
; ff mask0
; <- -> shift1 [24 in this example]
; ffffff mask1
(let* ((dword0-old (memi dword-addr x86-32))
(shift0 (ash (- 4 byte-num) 3))
(mask0 (- (ash 1 shift0) 1))
(shift1 (ash byte-num 3))
(mask1 (- (ash 1 shift1) 1))
(dword0-lo (logand dword0-old mask1))
(dword0-hi (ash (logand dword mask0) shift1))
(dword0-new (logior dword0-lo dword0-hi))
(x86-32 (!memi dword-addr dword0-new x86-32))
(dword-addr+1 (n30+ dword-addr 1))
(dword1-old (memi dword-addr+1 x86-32))
(dword1-lo (ash dword (- shift0)))
(dword1-hi (logand dword1-old (ash mask0 shift1)))
(dword1-new (logior dword1-lo dword1-hi))
(x86-32 (!memi dword-addr+1 dword1-new x86-32)))
x86-32))))
(defthm x86-32p-wm32
(implies (and (x86-32p x86-32)
(n32p addr)
(n32p dword))
(x86-32p (wm32 addr dword x86-32))))
(in-theory (disable wm32))
;;; The following lemmas probably won't be needed once we can traffic in stobjs
;;; when doing alist-based reasoning.
(defthm logior-<=-expt-2-to-n
(implies (and (natp x) (natp y)
(< x (expt 2 n))
(< y (expt 2 n)))
(< (logior x y) (expt 2 n)))
:rule-classes :linear)
(defthm logior-bound-2^32
(implies (and (natp x)
(natp y)
(< x *2^32*)
(< y *2^32*))
(< (logior x y) *2^32*))
:hints (("Goal" :use ((:instance logior-<=-expt-2-to-n
(n 32))))))
(local
(def-gl-thm hack3
:hyp (and (natp addr)
(< addr 4294967296)
(natp byte)
(< byte 256))
:concl
(< (ash byte (ash (logand addr 3) 3))
4294967296)
:g-bindings
`((addr (:g-number ,(gl-int 0 1 33)))
(byte (:g-number ,(gl-int 34 1 9))))))
;(in-theory (disable (expt)))
(defthm wm08-preserves-x86-32p
(implies (and (force (n32p addr))
(force (n08p byte))
(force (x86-32p x86-32)))
(x86-32p (wm08 addr byte x86-32)))
:hints (("Goal" :in-theory (enable wm08))))
(defthm wm16-preserves-x86-32p
(implies (and (force (n32p addr))
(force (n16p word))
(force (x86-32p x86-32)))
(x86-32p (wm32 addr word x86-32)))
:hints (("Goal" :in-theory (enable wm16))))
(defthm wm32-preserves-x86-32p
(implies (and (force (n32p addr))
(force (n32p dword))
(force (x86-32p x86-32)))
(x86-32p (wm32 addr dword x86-32)))
:hints (("Goal" :in-theory (enable wm32))))
|