1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
(in-package "ACL2")
;; This book establishes some facts about real continuous functions.
;; First, it shows that a function that is continuous on a closed
;; interval is uniformly continuous. Second, it proves the
;; intermediate value theorem. Last, it proves the extreme-value
;; theorems; i.e., a continuous function achieves its maximum and
;; minimum over a closed interval.
(include-book "nonstd/nsa/nsa" :dir :system)
(include-book "arithmetic/top" :dir :system)
(include-book "arithmetic/realp" :dir :system)
;; First, we introduce rcfn - a Real Continuous FunctioN of a single
;; argument. It is assumed to return standard values for standard
;; arguments, and to satisfy the continuity criterion.
(encapsulate
((rcfn (x) t))
;; Our witness continuous function is the identity function.
(local (defun rcfn (x) x))
;; The function returns standard values for standard arguments.
(defthm rcfn-standard
(implies (standard-numberp x)
(standard-numberp (rcfn x)))
:rule-classes (:rewrite :type-prescription))
;; For real arguments, the function returns real values.
(defthm rcfn-real
(implies (realp x)
(realp (rcfn x)))
:rule-classes (:rewrite :type-prescription))
;; If x is a standard real and y is a real close to x, then rcfn(x)
;; is close to rcfn(y).
(defthm rcfn-continuous
(implies (and (standard-numberp x)
(realp x)
(i-close x y)
(realp y))
(i-close (rcfn x) (rcfn y))))
)
;; First, we have a simple lemma. If x is limited, then
;; standard_part(x) is close to x.
(local
(defthm standard-part-close
(implies (i-limited x)
(i-close (standard-part x) x))
:hints (("Goal"
:use ((:instance i-small-non-standard-part))
:in-theory (enable-disable (i-close i-small)
(i-small-non-standard-part))))))
;; Now, we show that Rcfn is uniformly continuous. Note, this only
;; holds for limited x. I.e., x is in the interval [-M,M] where M is
;; some standard real M. But then, Rcfn is continuous on [-M,M], and
;; so its uniformly continuous on [-M,M] -- in particular, its
;; uniformly continuous around x.
(defthm rcfn-uniformly-continuous
(implies (and (i-limited x)
(realp x)
(i-close x y)
(realp y))
(i-close (rcfn x) (rcfn y)))
:hints (("Goal"
:use ((:instance rcfn-continuous
(x (standard-part x))
(y x))
(:instance rcfn-continuous
(x (standard-part x))
(y y))
(:instance i-close-transitive
(x (standard-part x))
(y x)
(z y))
(:instance i-close-transitive
(x (rcfn x))
(y (rcfn (standard-part x)))
(z (rcfn y)))
(:instance i-close-symmetric
(x (rcfn (standard-part x)))
(y (rcfn x))))
:in-theory (disable rcfn-continuous i-close-transitive
i-close-symmetric))))
;; This doesn't belong here. It should be moved over to nsa.lisp, and
;; probably written as (equal (equal (stdpt x) (stdpt y)) t) instead.
;; It could be a dangerous lemma if it tries to rewrite all
;; occurrences of standard-part!
#|
;; Note: This was moved to nsa.lisp
(local
(defthm close-x-y->same-standard-part
(implies (and (i-close x y)
(i-limited x))
(equal (standard-part x) (standard-part y)))
:hints (("Goal"
:use ((:instance i-close-limited))
:in-theory (enable-disable (i-close i-small)
(i-close-limited))))))
|#
;; But using that lemma, we can prove that (rcfn (std-pt x)) is equal
;; to (std-pt (rcfn x)) -- the reason is that x is close to its
;; std-pt, and since rcfn is continuous, that means (rcfn x) is to
;; close to the (rcfn (std-pt x)). The last one is known to be
;; standard (by an encapsulate hypothesis), so it must be the
;; standard-part of (rcfn x).
(defthm rcfn-standard-part
(implies (and (realp x)
(i-limited x))
(equal (rcfn (standard-part x))
(standard-part (rcfn x))))
:hints (("Goal"
:use ((:instance rcfn-continuous
(x (standard-part x))
(y x))
(:instance close-x-y->same-standard-part
(x (RCFN (STANDARD-PART X)))
(y (RCFN X))))
:in-theory (enable-disable (standards-are-limited)
(rcfn-continuous
close-x-y->same-standard-part)))))
; This function finds the largest a+i*eps so that f(a+i*eps)<z.
(defun find-zero-n (a z i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (realp a)
(integerp i)
(integerp n)
(< i n)
(realp eps)
(< 0 eps)
(< (rcfn (+ a eps)) z))
(find-zero-n (+ a eps) z (1+ i) n eps)
(realfix a)))
;; We prove that f(a+i*eps)<z for the i chosen above.
(defthm rcfn-find-zero-n-<-z
(implies (and (realp a) (< (rcfn a) z))
(< (rcfn (find-zero-n a z i n eps)) z)))
;; Moreover, we show that f(a+i*eps+eps) >= z, so that the i chosen by
;; find-zero-n is the largest possible.
(defthm rcfn-find-zero-n+eps->=-z
(implies (and (realp a)
(integerp i)
(integerp n)
(< i n)
(realp eps)
(< 0 eps)
(< (rcfn a) z)
(< z (rcfn (+ a (* (- n i) eps)))))
(<= z (rcfn (+ (find-zero-n a z i n eps)
eps)))))
;; The root found by find-zero-n is at least equal to a.
(defthm find-zero-n-lower-bound
(implies (and (realp a) (realp eps) (< 0 eps))
(<= a (find-zero-n a z i n eps))))
;; Moreover, the root found by find-zero-n can't be any larger than
;; b-eps. That means it must be in the range [a,b)
(encapsulate
()
(local
(defthm lemma-1
(implies (and (realp a)
(realp x))
(equal (<= a (+ a x))
(<= 0 x)))))
(defthm find-zero-n-upper-bound
(implies (and (realp a)
(integerp i)
(integerp n)
(<= 0 i)
(<= i n)
(realp eps)
(< 0 eps))
(<= (find-zero-n a z i n eps)
(+ a (* (- n i) eps))))
:hints (("Subgoal *1/6.1"
:use ((:instance lemma-1
(x (* (- n i) eps))))
:in-theory (disable lemma-1))))
)
;; Now, if a and b are limited and a<=x<=b, then x is limited. This
;; routine should probably go in nsa.lisp.
#|
Note: This has moved to nsa.lisp
(local
(defthm limited-squeeze
(implies (and (realp a) (realp b) (realp x)
(<= a x) (<= x b)
(i-limited a) (i-limited b))
(i-limited x))
:hints (("Goal"
:use ((:instance large-if->-large
(x x)
(y a))
(:instance large-if->-large
(x x)
(y b)))
:in-theory (enable-disable (abs) (large-if->-large))))))
|#
(encapsulate
()
(local
(defthm lemma-0
(implies (and (realp a)
(realp x)
(<= 0 x))
(not (< (+ a x) a)))))
(local
(defthm lemma-1
(implies (and (realp a) (i-limited a)
(realp b) (i-limited b)
(integerp i) (integerp n)
(<= 0 i) (<= i n)
(<= (+ a (* (+ n (- i)) eps)) b)
(realp eps)
(< 0 eps))
(i-limited (+ a (* (+ n (- i)) eps))))
:hints (("Goal" :do-not-induct t
:use ((:instance limited-squeeze
(x (+ a (* (- n i) eps)))))
:in-theory (disable distributivity limited-squeeze))
("Goal'''"
:use ((:instance lemma-0
(x (* EPS (+ (- I) N))))))
)))
(defthm limited-find-zero-n
(implies (and (realp a) (i-limited a)
(realp b) (i-limited b)
(integerp i) (integerp n)
(<= 0 i) (<= i n)
(<= (+ a (* (+ n (- i)) eps)) b)
(realp eps)
(< 0 eps))
(i-limited (find-zero-n a z i n eps)))
:hints (("Goal" :do-not-induct t
:use ((:instance find-zero-n-lower-bound)
(:instance find-zero-n-upper-bound)
(:instance lemma-1)
(:instance limited-squeeze
(x (find-zero-n a z i n eps))
(b (+ a (* (- n i) eps)))))
:in-theory (disable lemma-1
find-zero-n-lower-bound
find-zero-n-upper-bound
large-if->-large
limited-squeeze))))
)
;; Specifically, the invocation of find-zero-n in find-zero is
;; i-limited
(encapsulate
()
;; First, we need to show what happens to find-zero-n when the range
;; [a,b] is void.
(local
(defthm lemma-1
(implies (and (<= b a) (realp b))
(equal (FIND-ZERO-N A Z 0 (I-LARGE-INTEGER)
(+ (- (* (/ (I-LARGE-INTEGER)) A))
(* (/ (I-LARGE-INTEGER)) B)))
(realfix a)))
:hints (("Goal"
:expand ((FIND-ZERO-N A Z 0 (I-LARGE-INTEGER)
(+ (- (* (/ (I-LARGE-INTEGER)) A))
(* (/ (I-LARGE-INTEGER)) B)))))
("Goal'"
:use ((:instance <-*-left-cancel
(z (/ (i-large-integer)))
(x a)
(y b)))
:in-theory (disable <-*-left-cancel
<-*-/-LEFT-COMMUTED
/-cancellation-on-left)))))
;; Silly simplification! N+0=N
(local
(defthm lemma-2
(equal (+ (i-large-integer) 0) (i-large-integer))))
;; And, N*x/N = x.
(local
(defthm lemma-3
(equal (* (i-large-integer) x (/ (i-large-integer))) (fix x))))
;; Now, it's possible to show that find-zero-n is limited!
(defthm limited-find-zero-body
(implies (and (i-limited a)
(i-limited b)
(realp b))
(i-limited (find-zero-n a
z
0
(i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:cases ((and (realp a) (< a b))))
("Subgoal 1"
:use ((:instance limited-find-zero-n
(i 0)
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer)))))
:in-theory (disable limited-find-zero-n))))
)
;; And now, here's a routine that finds a "zero" in a given [a,b]
;; range.
(defun-std find-zero (a b z)
(if (and (realp a)
(realp b)
(realp z)
(< a b))
(standard-part
(find-zero-n a
z
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; Again, find-zero returns a root r so that f(r) <= z.
(defthm-std rcfn-find-zero-<=-z
(implies (and (realp a)
(realp b)
(< a b)
(realp z)
(< (rcfn a) z))
(<= (rcfn (find-zero a b z)) z))
:hints (("Goal"
:use ((:instance standard-part-<-2
(x z)
(y (rcfn (find-zero-n a z 0
(i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/
(i-large-integer)) b))))))
(:instance rcfn-find-zero-n-<-z
(i 0)
(n (i-large-integer))
(eps (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:in-theory (disable rcfn-find-zero-n-<-z))))
;; We need to know that if x is limited, so is (rcfn x)
(defthm rcfn-limited
(implies (and (realp x)
(i-limited x))
(i-limited (rcfn x)))
:hints (("Goal"
:use ((:instance i-close-limited
(x (rcfn (standard-part x)))
(y (rcfn x)))
(:instance rcfn-continuous
(x (standard-part x))
(y x)))
:in-theory (enable-disable (standards-are-limited)
(i-close-limited
rcfn-continuous
rcfn-standard-part
;; added for v2-6:
rcfn-uniformly-continuous)))))
;; We'll show that f(r+eps) >= z, so that the r found above is the
;; largest possible (within an eps resolution).
(encapsulate
()
;; First, a quick lemma: N+0 = N.
(local
(defthm lemma-1
(equal (+ (i-large-integer) 0) (i-large-integer))))
;; Also, N*x/N = x.
(local
(defthm lemma-2
(equal (* (i-large-integer) x (/ (i-large-integer))) (fix x))))
;; This silly rule lets us know that x is close to x+eps!
(local
(defthm lemma-3
(implies (and (realp x)
(i-limited x)
(realp eps)
(i-small eps))
(i-close x (+ eps x)))
:hints (("Goal" :in-theory (enable i-small i-close)))))
;; This horrible technical lemma simply gets rid of the +eps part of
;; (standard-part (rcfn (+ eps (find-zero-n ....)))) It follows,
;; simply, from the fact that eps is small and rcfn is uniformly
;; continuous, so (rcfn (+ eps (find-zero-n ...))) is close to (rcfn
;; (find-zero-n ...)).
(local
(defthm lemma-4
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(standard-numberp z)
(< (rcfn a) z)
(< z (rcfn b)))
(equal (standard-part
(rcfn (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)
(find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b))))))
(standard-part
(rcfn (find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b)))))))
:hints (("Goal"
:use ((:instance close-x-y->same-standard-part
(x (rcfn (find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b)))))
(y (rcfn (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)
(find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b)))))))
(:instance rcfn-uniformly-continuous
(x (find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b))))
(y (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)
(find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b))))))
(:instance lemma-3
(x (find-zero-n a z 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b))))
(eps (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:in-theory (disable close-x-y->same-standard-part
rcfn-uniformly-continuous
lemma-3)))))
;; And now, f(r+eps) >= z.
(defthm-std rcfn-find-zero->=-z
(implies (and (realp a)
(realp b)
(< a b)
(realp z)
(< (rcfn a) z)
(< z (rcfn b)))
(<= z (rcfn (find-zero a b z))))
:hints (("Goal"
:use ((:instance rcfn-find-zero-n+eps->=-z
(n (i-large-integer))
(i 0)
(eps (/ (- b a) (i-large-integer))))
(:instance standard-part-<=
(x z)
(y (RCFN (+ (- (* (/ (I-LARGE-INTEGER)) A))
(* (/ (I-LARGE-INTEGER)) B)
(FIND-ZERO-N A Z 0 (I-LARGE-INTEGER)
(+ (- (* (/ (I-LARGE-INTEGER)) A))
(* (/ (I-LARGE-INTEGER)) B)))))))
)
:in-theory (disable rcfn-find-zero-n+eps->=-z
standard-part-<=))))
)
;; Next, we prove that (find-zero a b z) is in the range (a,b)
(encapsulate
()
;; First, if a and b are standard, (b-a)/N is small, for N a large
;; integer.
(local
(defthm lemma-1
(implies (and (standard-numberp a)
(standard-numberp b))
(i-small (/ (- b a) (i-large-integer))))))
;; Silly algebra! a<=a+x if and only if 0<=x....
(local
(defthm lemma-2
(implies (and (realp a)
(realp x))
(equal (<= a (+ a x))
(<= 0 x)))))
;; Now, we find an upper bound for the root returned by find-zero-n.
(local
(defthm lemma-3
(implies (and (realp a)
(integerp i)
(integerp n)
(<= 0 i)
(<= i n)
(realp eps)
(< 0 eps))
(<= (find-zero-n a z i n eps)
(+ a (* (- n i) eps))))
:hints (("Subgoal *1/6.1"
:use ((:instance lemma-2
(x (* (- n i) eps))))
:in-theory (disable lemma-2)))))
;; Silly simplification! N+0=N
(local
(defthm lemma-4
(equal (+ (i-large-integer) 0) (i-large-integer))))
;; And, N*x/N = x.
(local
(defthm lemma-5
(equal (* (i-large-integer) x (/ (i-large-integer))) (fix x))))
;; A simple consequence is that the root found by find-zero(a,b,z) is
;; at most b.
(local
(defthm-std find-zero-upper-bound
(implies (and (realp a) (realp b) (realp z)
(< a b))
(<= (find-zero a b z) b))
:hints (("Goal"
:use ((:instance lemma-3
(i 0)
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer))))
(:instance standard-part-<=
(x (find-zero-n a z 0 (i-large-integer)
(/ (- b a)
(i-large-integer))))
(y b)))
:in-theory (disable lemma-3
standard-part-<=)))))
;; Similarly, find-zero-n finds a root at least equal to a.
(local
(defthm lemma-7
(implies (and (realp a) (realp eps) (< 0 eps))
(<= a (find-zero-n a z i n eps)))))
;; And that means find-zero finds a root at least a.
(local
(defthm-std find-zero-lower-bound
(implies (and (realp a) (realp b) (realp z) (< a b))
(<= a (find-zero a b z)))
:hints (("Goal"
:use ((:instance standard-part-<=
(x a)
(y (find-zero-n a z 0 (i-large-integer)
(/ (- b a)
(i-large-integer))))))
:in-theory (disable standard-part-<=)))))
;; And here is the intermediate value theorem.
(defthm intermediate-value-theorem
(implies (and (realp a)
(realp b)
(realp z)
(< a b)
(< (rcfn a) z)
(< z (rcfn b)))
(and (realp (find-zero a b z))
(< a (find-zero a b z))
(< (find-zero a b z) b)
(equal (rcfn (find-zero a b z))
z)))
:hints (("Goal"
:use ((:instance rcfn-find-zero-<=-z)
(:instance rcfn-find-zero->=-z)
(:instance find-zero-lower-bound)
(:instance find-zero-upper-bound))
:in-theory (disable find-zero
find-zero-lower-bound
find-zero-upper-bound
rcfn-find-zero-<=-z
rcfn-find-zero->=-z))))
)
|