1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
|
#|
This book establishes some facts about real differentiable
functions. It shows that differentiable functions are continuous.
Also, it proves Rolle's theorem and from that the mean value
theorem.
The results are taken from books/nonstd/nsa/derivatives.lisp.
|#
(in-package "ACL2")
(include-book "continuity")
(include-book "exercise4")
(include-book "exercise5")
;; The theorem i-close-reflexive in nsa.lisp forces ACL2 to back-chain
;; on acl2-numberp x. But, there's probably no need for that, since
;; we only use i-close in hypotheses when x is a number. So, it
;; should be safe the acl2-numberp hypothesis. We do that here. This
;; "improvement" should probably be migrated to axioms.lisp.
(local
(defthm i-close-reflexive-force
(implies (force (acl2-numberp x))
(i-close x x))
:hints (("Goal" :use (:instance i-close-reflexive)))))
;; First, we introduce rdfn - a Real Differentiable FunctioN of a
;; single argument. It is assumed to return standard values for
;; standard arguments, and to satisfy the differentiability criterion.
(encapsulate
((rdfn (x) t))
;; Our witness continuous function is the identity function.
(local (defun rdfn (x) x))
;; The function returns standard values for standard arguments.
(defthm rdfn-standard
(implies (standard-numberp x)
(standard-numberp (rdfn x)))
:rule-classes (:rewrite :type-prescription))
;; For real arguments, the function returns real values.
(defthm rdfn-real
(implies (realp x)
(realp (rdfn x)))
:rule-classes (:rewrite :type-prescription))
;; If x is a standard real and y1 and y2 are two arbitrary reals
;; close to x, then (rdfn(x)-rdfn(y1))/(x-y1) is close to
;; (rdfn(x)-rdfn(y2))/(x-y2). Also, (rdfn(x)-rdfn(y1))/(x-y1) is
;; limited. What this means is that the standard-part of that is a
;; standard number, and we'll call that the derivative of rdfn at x.
(defthm rdfn-differentiable
(implies (and (standard-numberp x)
(realp x)
(realp y1)
(realp y2)
(i-close x y1) (not (= x y1))
(i-close x y2) (not (= x y2)))
(and (i-limited (/ (- (rdfn x) (rdfn y1)) (- x y1)))
(i-close (/ (- (rdfn x) (rdfn y1)) (- x y1))
(/ (- (rdfn x) (rdfn y2)) (- x y2))))))
)
;; We want to prove the mean-value theorem. This states that there is
;; a point x in [a,b] so that the derivitate of rdfn at x is equal to
;; the slope of the line from (a, (rdfn a)) to (b, (rdfn b)). To
;; prove this, we first establish Rolle's theorem. This is a special
;; case of the mean-value theorem when (rdfn a) = (rdfn b) = 0. In
;; this case, we find an x in [a,b] so that the derivative of rdfn at
;; x is 0. This point x is easy to find. Simply look for the maximum
;; value of rdfn on [a,b]. If the maximum point is either a or b,
;; then that means rdfn is identically zero, so the derivative at any
;; point in (a,b) must be zero. Otherwise, we're talking about the
;; derivative of a local maximum (or minimum), and that is clearly
;; zero since the differentials at x swap signs coming from the left
;; and right.
;; The first major theorem is that rdfn is also continuous.
(encapsulate
()
;; Here is a simple lemma. If y is small and x/y is limited, then x
;; must be small (actually "smaller" than y).
(local
(defthm lemma-1
(implies (and (realp x)
(realp y)
(i-small y)
(not (= y 0))
(i-limited (/ x y)))
(i-small x))
:hints (("Goal"
:use ((:instance limited*large->large (y (/ y))))
:in-theory (disable limited*large->large)))))
;; Where this lemma comes in handy is that we know that ((rdfn x) -
;; (rdfn y))/(x - y) is limited for y close to x. From that, we can
;; conclude that (rdfn x) is close to (rdfn y) -- i.e., that rdfn is
;; continuous.
(defthm rdfn-continuous
(implies (and (standard-numberp x)
(realp x)
(i-close x y)
(realp y))
(i-close (rdfn x) (rdfn y)))
:hints (("Goal"
:use ((:instance rdfn-differentiable (y1 y) (y2 y))
(:instance lemma-1
(x (+ (rdfn x) (- (rdfn y))))
(y (+ x (- y)))))
:in-theory (enable-disable (i-close)
(rdfn-differentiable
lemma-1)))))
)
;; So now, we want to find the maximum of rdfn. We do this by
;; defining the functions of find-max-x from the rcfn case.
(defun find-max-rdfn-x-n (a max-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (> (rdfn (+ a (* i eps))) (rdfn max-x))
(find-max-rdfn-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-max-rdfn-x-n a max-x (1+ i) n eps))
max-x))
;; To use defun-std, we need to establish that the max-x-n function is
;; limited. We can do that by functional instantiation.
(defthm find-max-rdfn-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-max-rdfn-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x-n-limited
(find-max-rcfn-x-n find-max-rdfn-x-n)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x-n-limited))))
;; And so, we can use defun-std to get the maximum of rdfn on [a,b].
(defun-std find-max-rdfn-x (a b)
(if (and (realp a)
(realp b)
(< a b))
(standard-part (find-max-rdfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; Of course, we have to prove that it *is* the maximum, and we can do
;; that by functional instantiation.
(defthm find-max-rdfn-is-maximum
(implies (and (realp a)
(realp b)
(realp x)
(<= a x)
(<= x b)
(< a b))
(<= (rdfn x) (rdfn (find-max-rdfn-x a b))))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-is-maximum
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-is-maximum))))
;; We also need to prove that the maximum value is in the range
;; [a,b]. First, we find that it is >= a....again, by functional
;; instantiation.
(defthm find-max-rdfn-x->=-a
(implies (and (realp a)
(realp b)
(< a b))
(<= a (find-max-rdfn-x a b)))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x->=-a
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x->=-a))))
;; And it's <= b....by functional instantiation.
(defthm find-max-rdfn-x-<=-b
(implies (and (realp a)
(realp b)
(< a b))
(<= (find-max-rdfn-x a b) b))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x-<=-b
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x-<=-b))))
;; Arrrgh! Now we have to do it all over again for minimums! Here's
;; the definition of the minimum function.
(defun find-min-rdfn-x-n (a min-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (< (rdfn (+ a (* i eps))) (rdfn min-x))
(find-min-rdfn-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-min-rdfn-x-n a min-x (1+ i) n eps))
min-x))
;; Of course, it's limited.
(defthm find-min-rdfn-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-min-rdfn-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x-n-limited
(find-min-rcfn-x-n find-min-rdfn-x-n)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x-n-limited))))
;; And so we can use defun-std to get the "real" minimum value.
(defun-std find-min-rdfn-x (a b)
(if (and (realp a)
(realp b)
(< a b))
(standard-part (find-min-rdfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; And we can prove that it is the minimum, by functional instantiation.
(defthm find-min-rdfn-is-minimum
(implies (and (realp a)
(realp b)
(realp x)
(<= a x)
(<= x b)
(< a b))
(<= (rdfn (find-min-rdfn-x a b)) (rdfn x)))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-is-minimum
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-is-minimum))))
;; And it's >= a.....
(defthm find-min-rdfn-x->=-a
(implies (and (realp a)
(realp b)
(< a b))
(<= a (find-min-rdfn-x a b)))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x->=-a
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x->=-a))))
;; ....and <= b.
(defthm find-min-rdfn-x-<=-b
(implies (and (realp a)
(realp b)
(< a b))
(<= (find-min-rdfn-x a b) b))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x-<=-b
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x-<=-b))))
;; Now, here's an important theorem. If the minimum is equal to the
;; maximum, then rdfn is constant throughout [a,b]. We prove this for
;; arbitrary continuous functions.
(defthm min=max->-constant-rcfn
(implies (and (realp a)
(realp b)
(realp x)
(< a b)
(<= a x)
(<= x b)
(= (rcfn (find-min-rcfn-x a b))
(rcfn (find-max-rcfn-x a b))))
(equal (equal (rcfn (find-min-rcfn-x a b)) (rcfn x)) t))
:hints (("Goal"
:use ((:instance find-min-rcfn-is-minimum)
(:instance find-max-rcfn-is-maximum))
:in-theory (disable find-min-rcfn-is-minimum
find-max-rcfn-is-maximum))))
;; So of course it's true for rdfn, our differentiable (and hence
;; continuous!) function.
(defthm min=max->-constant-rdfn
(implies (and (realp a)
(realp b)
(realp x)
(< a b)
(<= a x)
(<= x b)
(= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(equal (equal (rdfn (find-min-rdfn-x a b)) (rdfn x)) t))
:hints (("Goal"
:use ((:functional-instance min=max->-constant-rcfn
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable min=max->-constant-rcfn))))
;; Now, let's define the differential of rdfn. I probably should have
;; swapped x and (+ x eps), so that the denominator was positive. Oh well....
(defun differential-rdfn (x eps)
(/ (- (rdfn x) (rdfn (+ x eps))) (- eps)))
;; An obvious fact is that the differential is a real number.
(defthm realp-differential-rdfn
(implies (and (realp x)
(realp eps))
(realp (differential-rdfn x eps)))
:hints (("Goal"
:expand ((differential-rdfn x eps)))))
(in-theory (disable find-min-rdfn-x find-max-rdfn-x))
;; OK now, if the minimum value of rdfn on [a,b] is equal to its
;; maximum value, then the differential of the midpoint of [a,b]
;; (actually of any point in (a,b)) must be zero. This is because the
;; function is constant.
(defthm rolles-theorem-lemma-1
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< (abs eps) (/ (- b a) 2))
(= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(equal (differential-rdfn (/ (+ a b) 2) eps) 0))
:hints (("Goal"
:use ((:instance min=max->-constant-rdfn
(x (+ (* 1/2 a) (* 1/2 b))))
(:instance min=max->-constant-rdfn
(x (+ eps (* 1/2 a) (* 1/2 b)))))
:in-theory (disable min=max->-constant-rdfn))))
;; Otherwise, if max-x is in (a,b), then it's derivative must be
;; zero. This follows because for a positive eps, the differential of
;; max-x using eps is non-positive -- since rdfn at x+eps is <= rdfn
;; at x, since x is a maximum. I.e., rdfn is falling from x to x+eps.
(defthm rolles-theorem-lemma-2a
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b))
(<= (differential-rdfn (find-max-rdfn-x a b) eps) 0)))
;; Similarly, for a negative eps, rdfn is rising from x+eps to x, so
;; the eps-differntial of x is non-negative.
(defthm rolles-theorem-lemma-2b
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b))
(<= 0 (differential-rdfn (find-max-rdfn-x a b) (- eps)))))
;; Of course, the same claims follow for an internal minimum, min-x.
;; For a positive epsilon, the differential is non-positive.
(defthm rolles-theorem-lemma-2c
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b))
(<= 0 (differential-rdfn (find-min-rdfn-x a b) eps))))
;; And for a negative epsilon it is non-negative.
(defthm rolles-theorem-lemma-2d
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b))
(<= (differential-rdfn (find-min-rdfn-x a b) (- eps)) 0)))
;; This is clearly something that belongs in nsa.lisp. The
;; standard-part of a small number is zero.
(local
(defthm standard-part-of-small
(implies (i-small eps)
(equal (standard-part eps) 0))
:hints (("Goal"
:in-theory (enable i-small)))))
;; Now, if a standard x is in (a,b) and eps is small, x-eps is in
;; (a,b). This is only true because x and a are standard!
(local
(defthm small-squeeze-standard-1
(implies (and (realp a) (standard-numberp a)
(realp x) (standard-numberp x)
(< a x)
(realp eps)
(< 0 eps)
(i-small eps))
(< a (- x eps)))
:hints (("Goal"
:use ((:instance standard-part-<-2 (x a) (y (- x eps))))))))
;; Similarly, x+eps is in (a,b).
(local
(defthm small-squeeze-standard-2
(implies (and (realp b) (standard-numberp b)
(realp x) (standard-numberp x)
(< x b)
(realp eps)
(< 0 eps)
(i-small eps))
(< (+ x eps) b))
:hints (("Goal"
:use ((:instance standard-part-<-2 (x (+ x eps)) (y b)))))))
;; We're particularly interested in when the internal point x is max-x
;; or min-x. So, we establish immediately that these points are
;; standard.
(defthm standard-find-min-max-rdfn
(implies (and (standard-numberp a)
(standard-numberp b))
(and (standard-numberp (find-min-rdfn-x a b))
(standard-numberp (find-max-rdfn-x a b))))
:hints (("Goal"
:in-theory (enable find-min-rdfn-x find-max-rdfn-x))))
;; So what this means is that if max-x is in (a,b), so are max-x+eps
;; and max-x-eps.
(defthm rolles-theorem-lemma-2e
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(< a (find-max-rdfn-x a b))
(< (find-max-rdfn-x a b) b)
(realp eps)
(< 0 eps)
(i-small eps))
(and (< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b)))
:hints (("Goal"
:use ((:instance small-squeeze-standard-1
(x (find-max-rdfn-x a b)))
(:instance small-squeeze-standard-2
(x (find-max-rdfn-x a b))))
:in-theory (disable small-squeeze-standard-1
small-squeeze-standard-2))))
;; And the same holds for min-x.
(defthm rolles-theorem-lemma-2f
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(< a (find-min-rdfn-x a b))
(< (find-min-rdfn-x a b) b)
(realp eps)
(< 0 eps)
(i-small eps))
(and (< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b)))
:hints (("Goal"
:use ((:instance small-squeeze-standard-1
(x (find-min-rdfn-x a b)))
(:instance small-squeeze-standard-2
(x (find-min-rdfn-x a b))))
:in-theory (disable small-squeeze-standard-1
small-squeeze-standard-2))))
;; Now, we define the critical point of rdfn on [a,b]. If min-x is
;; equal to max-x, then we arbitrarily pick the midpoint of a and b,
;; since that'll be an interior point. Otherwise, we pick whichever
;; of min-x or max-x is interior.
(defun rolles-critical-point (a b)
(if (equal (rdfn (find-min-rdfn-x a b)) (rdfn (find-max-rdfn-x a b)))
(/ (+ a b) 2)
(if (equal (rdfn (find-min-rdfn-x a b)) (rdfn a))
(find-max-rdfn-x a b)
(find-min-rdfn-x a b))))
;; OK now, if rdfn achieves its minimum at a, then the maximum is an
;; interior point.
(defthm rolles-theorem-lemma-3a
(implies (and (realp a)
(realp b)
(< a b)
(= (rdfn a) (rdfn b))
(not (= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(= (rdfn (find-min-rdfn-x a b)) (rdfn a)))
(and (< a (find-max-rdfn-x a b))
(< (find-max-rdfn-x a b) b)))
:hints (("Goal"
:use ((:instance find-max-rdfn-x->=-a)
(:instance find-max-rdfn-x-<=-b))
:in-theory (disable find-max-rdfn-x->=-a
find-max-rdfn-x-<=-b))))
;; If rdfn does not achieve its minimum at a, then the minimum itself
;; is an interior point.
(defthm rolles-theorem-lemma-3b
(implies (and (realp a)
(realp b)
(< a b)
(= (rdfn a) (rdfn b))
(not (= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(not (= (rdfn (find-min-rdfn-x a b)) (rdfn a))))
(and (< a (find-min-rdfn-x a b))
(< (find-min-rdfn-x a b) b)))
:hints (("Goal"
:use ((:instance find-min-rdfn-x->=-a)
(:instance find-min-rdfn-x-<=-b))
:in-theory (disable find-min-rdfn-x->=-a
find-min-rdfn-x-<=-b))))
;; If eps is a small number, then |eps| < midpoint(a,b). This key
;; fact means that the differentials at midpoint(a,b) are using
;; numbers inside the range (a,b).
(defthm rolles-theorem-lemma-4
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(realp eps)
(i-small eps))
(< (abs eps) (* (+ b (- a)) 1/2)))
:hints (("Goal"
:use ((:instance small-<-non-small
(x eps)
(y (* (+ b (- a)) 1/2)))
(:instance standard-small-is-zero
(x (* (+ b (- a)) 1/2))))
:in-theory (disable small-<-non-small))))
(in-theory (disable differential-rdfn))
;; Now, we can define the derivative of rdfn at x. This is simply the
;; standard-part of an arbitrary infinitesimal differential at x.
;; Since the differential is arbitrary, we choose our favorite
;; epsilon.
(defun derivative-rdfn (x)
(standard-part (differential-rdfn x (/ (i-large-integer)))))
(in-theory (disable derivative-rdfn))
;; This (or something like it) is another theorem that should be in
;; nsa.lisp.
(local
(defthm small+limited-close
(implies (and (i-limited x)
(i-small eps))
(i-close x (+ eps x)))
:hints (("Goal" :in-theory (enable nsa-theory)))))
;; We would like to rephrase the differentiability criteria in terms
;; of a small eps1 and eps2 instead of a y1, y2 close to x.
(defthm rdfn-differentiable-2a
(implies (and (realp x) (standard-numberp x)
(realp eps1) (i-small eps1) (not (= eps1 0))
(realp eps2) (i-small eps2) (not (= eps2 0)))
(i-close (differential-rdfn x eps1)
(differential-rdfn x eps2)))
:hints (("Goal"
:use ((:instance rdfn-differentiable
(y1 (+ x eps1))
(y2 (+ x eps2))))
:in-theory (enable-disable (differential-rdfn)
(rdfn-differentiable)))))
;; This is the ohter requirement of a differntiable function, namely
;; that the differntial is limited.
(defthm rdfn-differentiable-2b
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0)))
(i-limited (differential-rdfn x eps)))
:hints (("Goal"
:expand ((differential-rdfn x eps)))
("Goal'"
:use ((:instance rdfn-differentiable
(y1 (+ x eps))
(y2 (+ x eps))))
:in-theory (disable rdfn-differentiable))))
;; This theorem is clearly another candidate for inclusion on nsa.lisp!
(local
(defthm close-same-standard-part
(implies (and (i-close x y)
(i-limited x)
(i-limited y))
(equal (standard-part x) (standard-part y)))
:hints (("Goal" :in-theory (enable i-close i-small)))))
;; This rules converts instances of infinitesimal differntials into
;; the derivative. The syntaxp is there to keep the rule from looping
;; on the definition of derivative! This is probably a bad way of
;; going about the proof!
(defthm differential-rdfn-close
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(syntaxp (not (equal eps (/ (i-large-integer))))))
(equal (standard-part (differential-rdfn x eps))
(derivative-rdfn x)))
:hints (("Goal"
:use ((:instance rdfn-differentiable-2a
(eps1 eps)
(eps2 (/ (i-large-integer))))
(:instance rdfn-differentiable-2b)
(:instance rdfn-differentiable-2b
(eps (/ (i-large-integer))))
(:instance close-same-standard-part
(x (differential-rdfn x eps))
(y (differential-rdfn x (/ (i-large-integer))))))
:in-theory (enable-disable (derivative-rdfn)
(rdfn-differentiable-2a
rdfn-differentiable-2b
close-same-standard-part)))))
;; This is a major lemma. What it says if that if x is a number so
;; that a differential of rdfn at x with a given epsilon is positive,
;; but with -epsilon it's negative, then the derivative at x must be
;; zero.
(defthm derivative-==-0a
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(<= 0 (differential-rdfn x eps))
(<= (differential-rdfn x (- eps)) 0)
(syntaxp (not (equal eps (/ (i-large-integer))))))
(= 0 (derivative-rdfn x)))
:rule-classes nil ; added in v2-6 where "=" acts like "equal" just above.
:hints (("Goal"
:use ((:instance standard-part-<=
(x 0)
(y (differential-rdfn x eps)))
(:instance standard-part-<=
(x (differential-rdfn x (- eps)))
(y 0))
(:instance differential-rdfn-close)
(:instance differential-rdfn-close
(eps (- eps))))
:in-theory (disable derivative-rdfn
differential-rdfn-close
standard-part-<=))))
;; Of course, the same applies if for a given epsilon the differntials
;; are negative and for -epsilon they're positive. Hmmm, it looks
;; like the previous theorem is more general, so this is probably not
;; needed.
(defthm derivative-==-0b
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(<= (differential-rdfn x eps) 0)
(<= 0 (differential-rdfn x (- eps)))
(syntaxp (not (equal eps (/ (i-large-integer))))))
(= 0 (derivative-rdfn x)))
:rule-classes nil ; added in v2-6 where "=" acts like "equal" just above.
:hints (("Goal"
:use ((:instance standard-part-<=
(x (differential-rdfn x eps))
(y 0))
(:instance standard-part-<=
(x 0)
(y (differential-rdfn x (- eps))))
(:instance differential-rdfn-close)
(:instance differential-rdfn-close
(eps (- eps))))
:in-theory (disable derivative-rdfn
differential-rdfn-close
standard-part-<=))))
;; But it is enough to prove Rolle's theorem. The derivative of the
;; critical point is equal to zero. The critical point is either an
;; extreme value of rdfn interior to (a,b), or it's equal to the
;; midpoint of (a,b) if rdfn happens to be a constant function. In
;; either case, the derivative is zero.
(defthm rolles-theorem
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(= (rdfn a) (rdfn b))
(< a b))
(equal (derivative-rdfn (rolles-critical-point a b)) 0))
:hints (("Subgoal 3"
:use ((:instance rolles-theorem-lemma-1
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-4
(eps (/ (i-large-integer)))))
:in-theory (enable-disable (derivative-rdfn)
(rolles-theorem-lemma-1
rolles-theorem-lemma-4)))
("Subgoal 2"
:use ((:instance rolles-theorem-lemma-2c
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2d
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2f
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-3b)
(:instance derivative-==-0a
(x (find-min-rdfn-x a b))
(eps (/ (i-large-integer)))))
:in-theory (disable ;derivative-rdfn
rolles-theorem-lemma-2c
rolles-theorem-lemma-2d
rolles-theorem-lemma-2f
rolles-theorem-lemma-3b))
("Subgoal 1"
:use ((:instance rolles-theorem-lemma-2a
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2b
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2e
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-3a)
(:instance derivative-==-0b
(x (find-max-rdfn-x a b))
(eps (/ (i-large-integer)))))
:in-theory (disable rolles-theorem-lemma-2a
rolles-theorem-lemma-2b
rolles-theorem-lemma-2e
rolles-theorem-lemma-3a))))
;; OK now, we want to prove the mean-value theorem. We can actually
;; use the usual (not based on nsa) proof of this fact. The trick is
;; to use Rolle's theorem on a new function rdfn2 that's chosen so
;; that rdfn2 vanishes at both a and b. The function is given by rdfn
;; minus the line that goes from (a,(rdfn a)) to (b,(rdfn b)).
;; Because of this choice, when the derivative of rdfn2 is zero -- and
;; the existence of such a point in (a,b) is given by Rolle's theorem
;; -- it folloes that the derivative of rdfn is the same as the slope
;; of the line from (a,(rdfn a)) to (b,(rdfn b)). I.e., that point
;; satisfies the requirement of the mean value theorem.
;; First, we offer the definition of the function rdfn2. Notice, the
;; function depends on the actual points a and b. So, we use the
;; encapsulated range above. The statement of Rolle's theorem was
;; more general, in that the range [a,b] was placed in the hypothesis,
;; instead of an encapsulate. Unfortunately, we can't do that here,
;; because the function definition needs to know the values of a and b
;; (and we can't just pass them down, because we need to guarantee
;; that (rdfn2 x) is standard when x is standard, but since we use a
;; and b in the definition, that wouldn't be the case if a and b were
;; non-standard -- and if we explicitly check for that in the
;; definition, then the function becomes non-classical! Yikes! There
;; has to be an easier way.
(encapsulate
((a () t)
(b () t))
;; We will also need to reason about a range [a,b]. Here, we
;; axiomatize the two endpoints a and b.
;; Our witness range is [0,1].
(local (defun a () 0))
(local (defun b () 1))
;; Both endpoints are real.
(defthm realp-a
(realp (a))
:rule-classes (:rewrite :type-prescription))
(defthm realp-b
(realp (b))
:rule-classes (:rewrite :type-prescription))
;; And both endpoints are standard, because we want a standard range.
(defthm standardp-a
(standard-numberp (a)))
(defthm standardp-b
(standard-numberp (b)))
;; Finally, a < b, so the range is not void.
(defthm a-<-b
(< (a) (b)))
)
(defun rdfn2 (x)
(+ (rdfn x)
(- (* (- (rdfn (b)) (rdfn (a)))
(- x (a))
(/ (- (b) (a)))))
(- (rdfn (a)))))
(in-theory (disable (rdfn2)))
;; It is easy to see that rdfn2 returns a standard value when x is
;; standard.
(defthm rdfn2-standard
(implies (standard-numberp x)
(standard-numberp (rdfn2 x)))
:rule-classes (:rewrite :type-prescription))
;; Likewise, it returns a real number.
(defthm rdfn2-real
(implies (realp x)
(realp (rdfn2 x)))
:rule-classes (:rewrite :type-prescription))
;; And a limited number when x is standard.
(defthm rdfn2-limited
(implies (and (realp x) (standard-numberp x))
(i-limited (rdfn2 x)))
:hints (("Goal" :in-theory (enable-disable (standards-are-limited)
(rdfn2)))))
;; ACL2 is not really good at algebra, so we let it know how to
;; compute the value of (rdfn x) - (rdfn y), since that difference
;; will appear often, and the right simplification is important.
(encapsulate
()
;; Silly algebra!
(local
(defthm lemma-1
(equal (* a (+ x (- y)) b)
(+ (* a x b)
(- (* a y b))))))
;; The important thing below is that the difference cancels out the
;; "- (rdfn a)" term, and that the terms involving the slope of the
;; line can be combined.
(defthm rdfn2-diff
(equal (+ (rdfn2 x) (- (rdfn2 y)))
(+ (rdfn x)
(- (rdfn y))
(- (* (+ (rdfn (b)) (- (rdfn (a))))
(+ x (- y))
(/ (+ (b) (- (a)))))))))
)
;; Next, we want to show that rdfn2 really is a differentiable
;; function. One way to do this (and probably the right way) is to
;; prove that the sum/product of two differentiable functions is
;; differentiable. This would be similar to some of the theorems
;; about converging series we proved a long time ago. But, for the
;; present time, it's simply easier to prove the differentiability of
;; rdfn2 directly.
(encapsulate
()
;; First, we show ACL2 some obvious algebraic simplifications.
(local
(defthm lemma-1
(implies (not (equal (+ x (- y)) 0))
(equal (+ (- (* a b x (/ (+ x (- y)))))
(* a b y (/ (+ x (- y)))))
(- (* a b))))
:hints (("Goal"
:use ((:instance (:theorem
(equal (* a b (+ (- x) y) z)
(+ (- (* a b x z))
(* a b y z))))
(z (/ (+ x (- y)))))
(:instance (:theorem
(implies (and (acl2-numberp z)
(not (equal z 0)))
(equal (* a b (/ z) (- z))
(- (* a b)))))
(z (+ x (- y))))
))
("Subgoal 3"
:in-theory (disable distributivity)))))
;; This means that we can get a nice simplification for the
;; differentialof rdfn2. Notice how it splits into two parts, the
;; differential of rdfn and the slope of the line from a to b.
(local
(defthm lemma-2
(implies (not (equal (- x y1) 0))
(equal (/ (+ (rdfn2 x) (- (rdfn2 y1))) (+ x (- y1)))
(+ (* (+ (rdfn x)
(- (rdfn y1)))
(/ (- x y1)))
(- (* (+ (rdfn (b)) (- (rdfn (a))))
(/ (+ (b) (- (a)))))))))
:hints (("Goal"
:in-theory (disable rdfn2)))))
;; The second part of that is limited, because rdfn is a standard
;; function.
(local
(defthm lemma-3
(i-limited (+ (* (rdfn (a)) (/ (+ (- (a)) (b))))
(- (* (rdfn (b)) (/ (+ (- (a)) (b)))))))
:hints (("Goal" :in-theory (enable standards-are-limited)))))
;; This first part of the sum is limited, just because rdfn is
;; differentiable.
(local
(defthm lemma-4
(implies (and (standard-numberp x)
(realp x)
(realp y1)
(i-close x y1) (not (= x y1)))
(i-limited (* (+ (rdfn2 x) (- (rdfn2 y1))) (/ (+ x (- y1))))))
:hints (("Goal"
:use ((:instance i-limited-plus
(x (+ (* (rdfn (a)) (/ (+ (- (a)) (b))))
(- (* (rdfn (b)) (/ (+ (- (a))
(b)))))))
(y (+ (* (rdfn x) (/ (+ x (- y1))))
(- (* (rdfn y1) (/ (+ x (- y1))))))))
(:instance rdfn-differentiable (y2 y1)))
:in-theory (disable rdfn-differentiable)))))
;; This is a trivial simplification!
(local
(defthm lemma-5
(equal (i-close (+ a b x) (+ a b y))
(i-close (fix x) (fix y)))
:hints (("Goal" :in-theory (enable i-close)))))
;; We can now prove that rdfn2 is differentiable.
(defthm rdfn2-differentiable
(implies (and (standard-numberp x)
(realp x)
(realp y1)
(realp y2)
(i-close x y1) (not (= x y1))
(i-close x y2) (not (= x y2)))
(and (i-limited (/ (- (rdfn2 x) (rdfn2 y1)) (- x y1)))
(i-close (/ (- (rdfn2 x) (rdfn2 y1)) (- x y1))
(/ (- (rdfn2 x) (rdfn2 y2)) (- x y2)))))
:hints (("Goal"
:use ((:instance lemma-4))
:in-theory (disable rdfn2 rdfn2-diff lemma-4))
("Goal'''"
:use ((:instance rdfn-differentiable))
:in-theory (disable rdfn-differentiable))))
)
;; To apply Rolle's theorem to rdfn2, we have to define the max-x-n
;; routine to find the maximum of rdfn2 on a given grid.
(defun find-max-rdfn2-x-n (a max-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (> (rdfn2 (+ a (* i eps))) (rdfn2 max-x))
(find-max-rdfn2-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-max-rdfn2-x-n a max-x (1+ i) n eps))
max-x))
;; And we need to show that's limited (by functional instantiate)
(defthm find-max-rdfn2-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-max-rdfn2-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:by (:functional-instance find-max-rdfn-x-n-limited
(find-max-rdfn-x-n find-max-rdfn2-x-n)
(rdfn rdfn2))
:in-theory (disable find-max-rdfn-x-n-limited
; Added after v4-3 by Matt K.:
(tau-system)))
("Subgoal 4"
:in-theory '(find-max-rdfn2-x-n))
("Subgoal 3"
:use ((:instance rdfn2-differentiable))
:in-theory (disable rdfn2-differentiable))))
;; And then, of course, we introduce the true maximum max-x.
(defun-std find-max-rdfn2-x (a b)
(if (and (realp a) (i-limited a)
(realp b) (i-limited b)
(< a b))
(standard-part (find-max-rdfn2-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; Foots! Now we do it *again* for the minimum....sigh. This is why
;; we need to use defchoose to pick the min/max.
(defun find-min-rdfn2-x-n (a min-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (< (rdfn2 (+ a (* i eps))) (rdfn2 min-x))
(find-min-rdfn2-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-min-rdfn2-x-n a min-x (1+ i) n eps))
min-x))
;; The minimum is limited, yada, yada, yada....
(defthm find-min-rdfn2-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-min-rdfn2-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:by (:functional-instance find-min-rdfn-x-n-limited
(find-min-rdfn-x-n find-min-rdfn2-x-n)
(rdfn rdfn2))
:in-theory '(find-min-rdfn2-x-n))))
;; And we use defun-std to get the "real" minimum.
(defun-std find-min-rdfn2-x (a b)
(if (and (realp a) (i-limited a)
(realp b) (i-limited b)
(< a b))
(standard-part (find-min-rdfn2-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; Now, we define the critical point for rdfn2.
(defun rolles-critical-point-2 (a b)
(if (equal (rdfn2 (find-min-rdfn2-x a b)) (rdfn2 (find-max-rdfn2-x a b)))
(/ (+ a b) 2)
(if (equal (rdfn2 (find-min-rdfn2-x a b)) (rdfn2 a))
(find-max-rdfn2-x a b)
(find-min-rdfn2-x a b))))
;; And we define "differentials" for rdfn2.
(defun differential-rdfn2 (x eps)
(/ (- (rdfn2 x) (rdfn2 (+ x eps))) (- eps)))
;; And, of course, derivatives for rdfn2.
(defun derivative-rdfn2 (x)
(standard-part (differential-rdfn2 x (/ (i-large-integer)))))
;; And now we can prove Rolle's theorem for rdfn2, by functional
;; instantiation.
(defthm rolles-theorem-2
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(= (rdfn2 a) (rdfn2 b))
(< a b))
(equal (derivative-rdfn2 (rolles-critical-point-2 a b)) 0))
:hints (("Goal"
:by (:functional-instance rolles-theorem
(find-min-rdfn-x-n find-min-rdfn2-x-n)
(find-max-rdfn-x-n find-max-rdfn2-x-n)
(find-min-rdfn-x find-min-rdfn2-x)
(find-max-rdfn-x find-max-rdfn2-x)
(rdfn rdfn2)
(derivative-rdfn derivative-rdfn2)
(differential-rdfn differential-rdfn2)
(rolles-critical-point rolles-critical-point-2))
:in-theory (disable rolles-theorem))))
(in-theory (disable rolles-critical-point-2))
(in-theory (disable differential-rdfn2))
(in-theory (disable derivative-rdfn2))
;; OK, now to apply Rolle's theorem to the specific range we have in
;; mind. We need to show that (rdfn2 a) = (rdfn2 b). Well, the first
;; is obviously zero.
(defthm rdfn2-a
(equal (rdfn2 (a)) 0))
;; The second one is also zero, but that takes some algebra.....
(encapsulate
()
;; ....for example, we need a simple cancellation rule for a * x * 1/x
(local
(defthm lemma-1
(implies (and (acl2-numberp x) (not (= x 0)))
(equal (* a x (/ x)) (fix a)))))
;; A trivial observation is that b-a isn't zero, since a<b.
(local
(defthm lemma-2
(equal (equal (+ (- (a)) (b)) 0) nil)
:hints (("Goal"
:use ((:instance a-<-b))
:in-theory (disable a-<-b)))))
;; So from the two theorems above, we get that a*(b-a)*1/(b-a) is
;; just equal to a.
(local
(defthm lemma-3
(equal (* a (+ (- (a)) (b)) (/ (+ (- (a)) (b)))) (fix a))
:hints (("Goal"
:use ((:instance lemma-1 (x (+ (- (A)) (B)))))
:in-theory (disable lemma-1)))))
;; And so (rdfn2 b) is equal to zero!
(defthm rdfn2-b
(equal (rdfn2 (b)) 0))
)
;; Now, let's specialize Rolle's theorem for the specific endpoints we
;; have in mind. Notice how this does away with all the hypotheses,
;; since they were there just to limit the possibilities of a and b.
(defthm rolles-theorem-2-specialized
(equal (derivative-rdfn2 (rolles-critical-point-2 (a) (b))) 0)
:hints (("Goal"
:use ((:instance rolles-theorem-2 (a (a)) (b (b))))
:in-theory (disable rolles-theorem-2))))
;; So here's an obvious corollary. Since the derivative of rdfn2 at
;; the critical point is zero, that means the differential of rdfn2 at
;; the critical point must be small.
(defthm rolles-theorem-2-corollary
(i-small (differential-rdfn2 (rolles-critical-point-2 (a) (b))
(/ (i-large-integer))))
:hints (("Goal"
:use ((:instance rolles-theorem-2-specialized))
:in-theory (enable-disable (i-small derivative-rdfn2)
(rolles-theorem-2
rolles-theorem-2-specialized)))))
;; And now we're almost ready for the mean value theorem!
(encapsulate
()
;; Well, actually, we need some algebra, so that ACL2 opens up the
;; addition in the middle of the following term.
(local
(defthm lemma-1
(equal (* a (+ (- y) x) b)
(+ (* a x b)
(- (* a y b))))))
;; And here's more algebra, to cancel a z*1/z term.
(local
(defthm lemma-2
(implies (and (acl2-numberp z)
(not (equal z 0)))
(equal (* a b z (/ z))
(* a b)))))
;; And here's an important lemma. The differential of rdfn at any
;; point is the same as the differential of rdfn2 at that point,
;; plus the slope of the function from a to b.
(defthm mvt-theorem-lemma
(implies (and (acl2-numberp eps)
(not (= eps 0)))
(equal (differential-rdfn x eps)
(+ (* (+ (- (rdfn (a))) (rdfn (b)))
(/ (+ (- (a)) (b))))
(differential-rdfn2 x eps))))
:hints (("Goal"
:in-theory (enable differential-rdfn
differential-rdfn2))))
)
(in-theory (disable rdfn2))
;; Putting it all together, we get the mean value theorem! We know
;; that the differential of rdfn is the sum of the differential of
;; rdfn2 and the slope of the line from a to b. The differential of
;; rdfn2 at the critical point is small. So, the derivative of rdfn
;; at the critical point must be equal to the slope of the line from a
;; to b!
(defthm mvt-theorem
(equal (derivative-rdfn (rolles-critical-point-2 (a) (b)))
(/ (- (rdfn (b)) (rdfn (a)))
(- (b) (a))))
:hints (("Goal"
:expand ((derivative-rdfn (rolles-critical-point-2 (a) (b)))))
("Goal'"
:use ((:instance standard-part-of-plus
(x (differential-rdfn2 (rolles-critical-point-2 (a) (b))
(/ (i-large-integer))))
(y (+ (- (* (rdfn (a)) (/ (+ (- (a)) (b)))))
(* (rdfn (b)) (/ (+ (- (a)) (b))))))))
:in-theory (disable standard-part-of-plus))
("Goal'4'"
:in-theory (enable small-are-limited))))
|