File: exercise2.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (159 lines) | stat: -rw-r--r-- 4,356 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#|

This book uses the "increasing" version of the intermediate value
theorem to prove a "decreasing" version (i.e., when f(a) > f(b)).
The basic idea is to consider the "increasing" version for the
function g(x)=-f(x).

|#

(in-package "ACL2")

(include-book "continuity")

;; First, we find the root.  It would be nice if we could define this
;; using something akin to a :functional-instance (:lambda-instance,
;; anyone?)

(defun find-zero-n-2 (a z i n eps)
  (declare (xargs :measure (nfix (1+ (- n i)))))
  (if (and (realp a)
	   (integerp i)
	   (integerp n)
	   (< i n)
	   (realp eps)
	   (< 0 eps)
	   (< z (rcfn (+ a eps))))
      (find-zero-n-2 (+ a eps) z (1+ i) n eps)
    (realfix a)))

;; The key lemma -- if -x is close to -y, then x is close to y.

(defthm close-uminus
  (implies (and (acl2-numberp x)
		(acl2-numberp y))
	   (equal (i-close (- x) (- y))
		  (i-close x y)))
  :hints (("Goal"
	   :use ((:instance i-small-uminus (x (+ x (- y)))))
	   :in-theory (enable i-close i-small-uminus))))

;; We prove that this function returns a limited number for limited
;; arguments.

(defthm limited-find-zero-2-body
  (implies (and (i-limited a)
		(i-limited b)
		(realp b)
		(realp z))
	   (i-limited (find-zero-n-2 a
				     z
				     0
				     (i-large-integer)
				     (+ (- (* (/ (i-large-integer)) a))
					(* (/ (i-large-integer)) b)))))
   :hints (("Goal"
	    :use ((:instance
		   (:functional-instance
		    limited-find-zero-body
		    (rcfn (lambda (x) (- (rcfn x))))
		    (find-zero-n (lambda (a z i n
					    eps)
				   (find-zero-n-2
				    a (- z) i n eps))))
		   (z (- z))))
	    :in-theory (disable limited-find-zero-body))))

;; We define the root we want in the range [a,b)

(defun-std find-zero-2 (a b z)
  (if (and (realp a)
	   (realp b)
	   (realp z)
	   (< a b))
      (standard-part
       (find-zero-n-2 a
		      z
		      0
		      (i-large-integer)
		      (/ (- b a) (i-large-integer))))
    0))

;; And here is the second version of the intermediate value theorem.

(local
 (defthm standardp-minus-z
   (implies (and (realp z)
                 (standardp z))
            (standardp (- z)))
   :rule-classes (:type-prescription :forward-chaining)))

(local
 (defthmd definition-of-find-zero-2-lemma
   (implies (and (standardp a)
                 (standardp b)
                 (standardp z))
            (equal (find-zero-2 a b z)
                   (if (and (realp a)
                            (realp b)
                            (realp z)
                            (< a b))
                       (standard-part
                        (find-zero-n-2 a
                                       z
                                       0
                                       (i-large-integer)
                                       (/ (- b a) (i-large-integer))))
                     0)))))

(local
 (defthmd definition-of-find-zero-2-uminus-z
   (implies (and (standardp a)
                 (standardp b)
                 (standardp z))
            (equal (find-zero-2 a b (- z))
                   (if (and (realp a)
                            (realp b)
                            (realp (- z))
                            (< a b))
                       (standard-part
                        (find-zero-n-2 a
                                       (- z)
                                       0
                                       (i-large-integer)
                                       (/ (- b a) (i-large-integer))))
                     0)))
   :hints (("Goal"
            :use ((:instance definition-of-find-zero-2-lemma
                             (z (- z))))))
   ))

(defthm intermediate-value-theorem-2
  (implies (and (realp a)
		(realp b)
		(realp z)
		(< a b)
		(< z (rcfn a))
		(< (rcfn b) z))
	   (and (realp (find-zero-2 a b z))
		(< a (find-zero-2 a b z))
		(< (find-zero-2 a b z) b)
		(equal (rcfn (find-zero-2 a b z))
		       z)))
  :hints (("Goal"
	   :use ((:instance
		  (:functional-instance
		   intermediate-value-theorem
		   (rcfn (lambda (x) (- (rcfn x))))
		   (find-zero (lambda (a b z)
				(find-zero-2 a b
					     (if (realp z) (- z) z))))
		   (find-zero-n (lambda (a z i n
					   eps)
				  (find-zero-n-2
				   a (- z) i n eps))))
		  (z (if (realp z) (- z) z))
		  ))
	   :in-theory
	   (disable intermediate-value-theorem))
           ))