1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
#|
This book finds the maximum point of a continuous function in a
closed interval.
|#
(in-package "ACL2")
(include-book "continuity")
#|
;; This doesn't belong here. It should be moved over to nsa.lisp, and
;; probably written as (equal (equal (stdpt x) (stdpt y)) t) instead.
;; It could be a dangerous lemma if it tries to rewrite all
;; occurrences of standard-part!
;; Note: It has been moved to nsa.lisp
(local
(defthm close-x-y->same-standard-part
(implies (and (i-close x y)
(i-limited x))
(equal (standard-part x) (standard-part y)))
:hints (("Goal"
:use ((:instance i-close-limited))
:in-theory (enable-disable (i-close i-small)
(i-close-limited))))))
|#
;; The task is to prove the maximal theorem. The approach is similar
;; to the intermediate-value theorem. First, we define a function
;; that splits up the interval [a,b] into a grid of size eps and then
;; we find the maximum of the function at the points in the grid.
(defun find-max-rcfn-x-n (a max-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (> (rcfn (+ a (* i eps))) (rcfn max-x))
(find-max-rcfn-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-max-rcfn-x-n a max-x (1+ i) n eps))
max-x))
;; Since the function above takes in a "max-so-far" argument, it is
;; important to note that the initial value of max-so-far is a lower
;; bound for the maximum.
(defthm find-max-rcfn-x-n-is-monotone
(<= (rcfn max-x) (rcfn (find-max-rcfn-x-n a max-x i n eps))))
;; Now, we can say that the maximum returned really is the maximum of
;; all the f(x) values at the points x on the grid.
(defthm find-max-rcfn-x-n-is-maximum
(implies (and (integerp i)
(integerp k)
(integerp n)
(<= 0 i)
(<= i k)
(<= k n)
(realp a)
(realp eps)
(< 0 eps))
(<= (rcfn (+ a (* k eps)))
(rcfn (find-max-rcfn-x-n a max-x i n eps))))
:hints (("Subgoal *1/7"
:use ((:instance find-max-rcfn-x-n-is-monotone))
:in-theory (disable find-max-rcfn-x-n-is-monotone))))
;; Naturally, we want to prove that the x value returned for the
;; maximum is in the interval [a,b]. First, we show that it's at most
;; b. Notice we need to assume the starting value of max-x is less
;; than b!
(defthm find-max-rcfn-x-n-upper-bound
(implies (and (<= max-x (+ a (* n eps)))
(realp a)
(realp eps)
(integerp i)
(integerp n)
(< 0 eps))
(<= (find-max-rcfn-x-n a max-x i n eps) (+ a (* n eps))))
:hints (("Subgoal *1/1"
:use ((:theorem
(implies (and (< (+ a (* eps n)) (+ a (* i eps)))
(realp a)
(realp eps)
(< 0 eps)
(integerp i)
(integerp n))
(< n i)))))
("Subgoal *1/1.1"
:use ((:theorem
(implies (< (+ a (* eps n)) (+ a (* eps i)))
(< (* eps n) (* eps i)))))))
:rule-classes nil)
;; To show that find-max-rcfn-x-n returns a value that is not less
;; than a, we need a simple lemma to do the induction at each of the
;; points in the grid.
(defthm find-max-rcfn-x-n-lower-bound-lemma
(implies (<= max-x (+ a (* i eps)))
(<= max-x (find-max-rcfn-x-n a max-x i n eps))))
;; Now, we can fix the lower range of find-max-x-r-n
(defthm find-max-rcfn-x-n-lower-bound
(<= a (find-max-rcfn-x-n a a 0 n eps))
:hints (("Goal"
:use ((:instance find-max-rcfn-x-n-lower-bound-lemma
(max-x a)
(i 0)))
:in-theory (disable find-max-rcfn-x-n-lower-bound-lemma))))
;; Next, we would like to use defun-std to introduce find-max-x.
;; Before that, we have to show that find-max-x-n is i-limited. This
;; is simple, since we know it's in the range [a,b] and b is limited.
(defthm find-max-rcfn-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-max-rcfn-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
;; Slight change in hint structure needed for v2-8.
:hints (("Goal"
:use ((:instance find-max-rcfn-x-n-upper-bound
(max-x a)
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer)))
(i 0))
(:instance
(:theorem
(implies (and (realp a)
(realp b)
(realp x)
(i-limited a)
(i-limited b)
(<= a x)
(<= x b))
(i-limited x)))
(x (find-max-rcfn-x-n a a 0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer))
b)))))))
("Subgoal 1"
:use ((:instance large-if->-large
(x x)
(y (if (< (abs a) (abs b))
(abs b)
(abs a)))))
:in-theory (disable large-if->-large))))
;; And now we can introduce the function find-max-rcfn-x which (we
;; claim) finds the point x in [a,b] at which (rcfn x) achieves a
;; maximum.
(defun-std find-max-rcfn-x (a b)
(if (and (realp a)
(realp b)
(< a b))
(standard-part (find-max-rcfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; So first, let's do the easy part of the claim, namely that the x
;; returned by find-max satisfies a <= x.
(defthm-std find-max-rcfn-x->=-a
(implies (and (realp a)
(realp b)
(< a b))
(<= a (find-max-rcfn-x a b)))
:hints (("Goal'"
:use ((:instance standard-part-<=
(x a)
(y (find-max-rcfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))))
:in-theory (disable standard-part-<=))))
;; Similarly, that x satisfies x <= b, so x is in [a, b].
(defthm-std find-max-rcfn-x-<=-b
(implies (and (realp a)
(realp b)
(< a b))
(<= (find-max-rcfn-x a b) b))
; Matt K. v7-1 mod for ACL2 mod on 2/13/2015: "Goal''" changed to "Goal'".
:hints (("Goal'"
:use ((:instance standard-part-<=
(x (find-max-rcfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
(y b))
(:instance find-max-rcfn-x-n-upper-bound
(max-x a)
(i 0)
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer))))
)
:in-theory (disable standard-part-<=)))
)
;; OK now, (rcfn max) should be the maximum at all the grid points,
;; modulo standard-part. Why? Because max is (std-pt max-n). By
;; construction, max-n is the maximum of all grid-points. But, (rcfn
;; max) and (rcfn max-n) are close to each other, since rcfn is
;; continuous. Also, (rcfn max) is standard, since max is standard, so
;; (rcfn max) = (std-pt (rcfn max-n)) >= (std-pt (rcfn x_i)) where x_i
;; is any point in the grid.
(defthm find-max-rcfn-is-maximum-of-grid
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(integerp k)
(<= 0 k)
(<= k (i-large-integer)))
(<= (standard-part (rcfn (+ a (* k (/ (- b a)
(i-large-integer))))))
(rcfn (find-max-rcfn-x a b))))
:hints (("Goal"
:use ((:instance standard-part-<=
(x (rcfn (+ a (* k (/ (- b a)
(i-large-integer))))))
(y (rcfn
(find-max-rcfn-x-n a a 0
(i-large-integer)
(/ (- b a)
(i-large-integer))))))
(:instance find-max-rcfn-x-n-is-maximum
(i 0)
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer)))
(max-x a)))
:in-theory (disable standard-part-<=
find-max-rcfn-x-n-is-maximum))))
;; Now, we know the maximum we found really is the maximum at all the
;; grid points. But what about an arbitrary x in [a,b]? What we'll
;; do is to find where x falls in the grid. I.e., we want the i so
;; that x is in [x_{i-1},x_i]. What we'll know is that (rcfn x) is
;; the standard-part of (rcfn x_i), since x and x_i are close to each
;; other and x is standard. But then, since we know that (rcfn max)
;; is >= (std-pt (rcfn x_i)) = (rcfn x) we have that max really is the
;; maximum for all x.
;; But wait! That's not quite true. The equality (std-pt (rcfn x_i)) =
;; (rcfn x) only holds when x is standard! So what this argument does
;; is prove that (rcfn max) >= (rcfn x) for all standard x. To finish
;; up the proof, we need to appeal to the transfer principle!
;; First, we define the function that finds the right index i.
(defun upper-bound-of-grid (a x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(< i n)
(<= (+ a (* i eps)) x))
(upper-bound-of-grid a x (1+ i) n eps)
i))
;; This seems obvious -- why didn't ACL2 figure it out by itself? --
;; but the index returned is a real number.
(defthm realp-upper-bound-of-grid
(implies (realp i)
(realp (upper-bound-of-grid a x i n eps))))
;; More precisely, it's an _integer_.
(defthm integerp-upper-bound-of-grid
(implies (integerp i)
(integerp (upper-bound-of-grid a x i n eps))))
;; OK now, the index found is at least equal to the starting index....
(defthm upper-bound-of-grid-lower-bound
(<= i (upper-bound-of-grid a x i n eps)))
;; ...and it's at most the final index.
(defthm upper-bound-of-grid-upper-bound
(implies (<= i n)
(<= (upper-bound-of-grid a x i n eps) n)))
;; So now, we can show that x is in the range [x_{i-1},x_i]
(defthm x-in-upper-bound-of-grid
(implies (and (integerp i)
(integerp n)
(realp eps)
(< 0 eps)
(realp x)
(<= i n)
(<= (+ a (* i eps)) x)
(<= x (+ a (* n eps))))
(and (<= (- (+ a (* (upper-bound-of-grid a x i n eps)
eps))
eps)
x)
(<= x (+ a (* (upper-bound-of-grid a x i n eps)
eps))))))
;; The above theorem implies that when eps is small, the difference
;; between x and x_i is small (since x_{i-1} <= x <= x_i and
;; x_i-x_{i-1} = eps is small).
(defthm x-in-upper-bound-of-grid-small-eps
(implies (and (integerp i)
(integerp n)
(realp eps)
(< 0 eps)
(realp a)
(realp x)
(<= i n)
(<= (+ a (* i eps)) x)
(<= x (+ a (* n eps)))
(i-small eps))
(i-small (- (+ a (* (upper-bound-of-grid a x i n eps)
eps))
x)))
:hints (("Goal"
:do-not-induct t
:use ((:instance small-if-<-small
(x eps)
(y (- (+ a (* (upper-bound-of-grid a x i n eps)
eps))
x)))
(:instance x-in-upper-bound-of-grid))
:in-theory (disable small-if-<-small
x-in-upper-bound-of-grid))))
;; So, we have that when eps is small, x and x_i are close to each other.
(defthm x-in-upper-bound-of-grid-small-eps-better
(implies (and (integerp i)
(integerp n)
(realp eps)
(< 0 eps)
(realp a)
(realp x)
(<= i n)
(<= (+ a (* i eps)) x)
(<= x (+ a (* n eps)))
(i-small eps))
(i-close x
(+ a (* (upper-bound-of-grid a x i n eps)
eps))))
:hints (("Goal"
:use ((:instance i-close-symmetric
(x (+ a (* (upper-bound-of-grid a x i n eps)
eps)))
(y x))
(:instance x-in-upper-bound-of-grid-small-eps))
:in-theory '(i-close))))
;; Since rcfn is continuous, it follows that (rcfn x) and (rcfn x_i)
;; are close to each other!
(defthm rcfn-x-close-to-rcfn-upper-bound-of-grid
(implies (and (integerp i)
(integerp n)
(realp eps)
(< 0 eps)
(realp a)
(realp x)
(standard-numberp x)
(<= i n)
(<= (+ a (* i eps)) x)
(<= x (+ a (* n eps)))
(i-small eps))
(i-close (rcfn x)
(rcfn (+ a (* (upper-bound-of-grid a x i n eps)
eps)))))
:hints (("Goal"
:use ((:instance rcfn-continuous
(y (+ a (* (upper-bound-of-grid a x i n eps)
eps))))
(:instance x-in-upper-bound-of-grid-small-eps-better))
:in-theory (disable rcfn-continuous
x-in-upper-bound-of-grid-small-eps-better
upper-bound-of-grid))))
;; In particular, (std-pt (rcfn x_i)) = (std-pt (rcfn x)) and when x
;; is standard that's equal to (rcfn x).
(defthm rcfn-x-close-to-rcfn-upper-bound-of-grid-better
(implies (and (integerp i)
(integerp n)
(realp eps)
(< 0 eps)
(realp a)
(realp x)
(standard-numberp x)
(<= i n)
(<= (+ a (* i eps)) x)
(<= x (+ a (* n eps)))
(i-small eps))
(equal (standard-part (rcfn (+ a (* (upper-bound-of-grid a x i n eps)
eps))))
(rcfn x)))
:hints (("Goal"
:use ((:instance rcfn-x-close-to-rcfn-upper-bound-of-grid)
(:instance close-x-y->same-standard-part
(x (rcfn x))
(y (rcfn (+ a (* (upper-bound-of-grid a x i n eps)
eps))))))
:in-theory (disable
rcfn-x-close-to-rcfn-upper-bound-of-grid
close-x-y->same-standard-part
upper-bound-of-grid))))
;; So that means that (rcfn max) >= (rcfn x), because we already know
;; that (rcfn max) >= (std-pt (rcfn x_i)) for all indices i! That
;; only works for standard values of x.
(local
(defthm small-range
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b))
(i-small (+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b))))))
(defthm find-max-rcfn-is-maximum-of-standard
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(realp x) (standard-numberp x)
(<= a x)
(<= x b)
(< a b))
(<= (rcfn x) (rcfn (find-max-rcfn-x a b))))
:hints (("Goal"
:use ((:instance find-max-rcfn-is-maximum-of-grid
(k (upper-bound-of-grid a x 0
(i-large-integer)
(/ (- b a)
(i-large-integer)))))
(:instance
rcfn-x-close-to-rcfn-upper-bound-of-grid-better
(n (i-large-integer))
(eps (/ (- b a) (i-large-integer)))
(i 0)))
:in-theory
(disable
rcfn-x-close-to-rcfn-upper-bound-of-grid-better
find-max-rcfn-is-maximum-of-grid
small-<-non-small
limited-integers-are-standard))))
;; So now, we "transfer" that result to *all* values of x in [a,b].
;; What we have is that for all x in [a,b], (rcfn max) >= (rcfn x) and
;; that max is in [a,b]. This is the "maximum theorem".
(defthm-std find-max-rcfn-is-maximum
(implies (and (realp a)
(realp b)
(realp x)
(<= a x)
(<= x b)
(< a b))
(<= (rcfn x) (rcfn (find-max-rcfn-x a b))))
:hints (("Goal"
:in-theory (disable find-max-rcfn-x))))
|