File: exercise6.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (221 lines) | stat: -rw-r--r-- 5,874 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#|

This book shows that the sum and product of two continuous functions
is continuous.  (See exercise8.lisp for the analogous result about
differentiable functions.)

|#

(in-package "ACL2")

(include-book "nonstd/nsa/nsa" :dir :system)
(include-book "arithmetic/top" :dir :system)
(include-book "arithmetic/realp" :dir :system)

;; First, we define a generic continuous function, f1.  This is just a
;; rewrite of the definition in continuity.lisp for rcfn.

(encapsulate
 ((f1 (x) t))

 ;; Our witness continuous function is the identity function.

 (local (defun f1 (x) x))

 ;; The function returns standard values for standard arguments.

 (defthm f1-standard
   (implies (standard-numberp x)
	    (standard-numberp (f1 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; For real arguments, the function returns real values.

 (defthm f1-real
   (implies (realp x)
	    (realp (f1 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; If x is a standard real and y is a real close to x, then f1(x)
 ;; is close to f1(y).

 (defthm f1-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y)
		 (realp y))
	    (i-close (f1 x) (f1 y))))
 )

;; We need a separate definition for the second continuous function.
;; This is the way we can reason about two continuous functions
;; simultaneously.  It would be nice to have some support for this
;; sort of syntactic encapsulate building in Acl2.

(encapsulate
 ((f2 (x) t))

 ;; Our witness continuous function is the identity function.

 (local (defun f2 (x) x))

 ;; The function returns standard values for standard arguments.

 (defthm f2-standard
   (implies (standard-numberp x)
	    (standard-numberp (f2 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; For real arguments, the function returns real values.

 (defthm f2-real
   (implies (realp x)
	    (realp (f2 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; If x is a standard real and y is a real close to x, then f2(x)
 ;; is close to f2(y).

 (defthm f2-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y)
		 (realp y))
	    (i-close (f2 x) (f2 y))))
 )

;; Now, we define the sum of f1 and f2.

(defun f1+f2 (x)
  (+ (f1 x) (f2 x)))

;; To show that f1+f2 is continuous, we concentrate on the continuity
;; condition since the other two constraints are obviously true.  The
;; continuity result follows from the fact that x1+y1 is close to
;; x2+y2 when x1 is close to x2 and y1 is close to y2.  But this lemma
;; isn't quite obvious, so we get there in two steps:

(defthm close-plus
  (implies (and (i-close x1 x2)
		(i-limited y))
	   (i-close (+ x1 y) (+ x2 y)))
  :hints (("Goal" :in-theory (enable i-close))))

(defthm close-plus-2
  (implies (and (i-close x1 x2)
		(i-close y1 y2)
		(i-limited x1)
		(i-limited y1))
	   (i-close (+ x1 y1) (+ x2 y2)))
  :hints (("Goal"
	   :use ((:instance close-plus (x1 x1) (x2 x2) (y y1))
		 (:instance close-plus (x1 y1) (x2 y2) (y x2))
		 (:instance i-close-transitive
			    (x (+ x1 y1))
			    (y (+ x2 y1))
			    (z (+ x2 y2)))
		 (:instance i-close-limited
			    (x x1)
			    (y x2)))
	   :in-theory (disable close-plus i-close-transitive i-close-limited))))

;; Now we can show that f1+f2 is continuous:

(defthm f1+f2-continuous
  (implies (and (standard-numberp x)
		(realp x)
		(i-close x y)
		(realp y))
	   (i-close (f1+f2 x) (f1+f2 y)))
  :hints (("Goal" :in-theory (enable standards-are-limited))))

;; But are we really done?  To show that we are, we force ACL2 to
;; functionally instantiate rcfn with f1+f2 (Note, the actual theorem
;; we prove doesn't matter):

(encapsulate
 nil
 (local (include-book "continuity"))

 (local
  (defthm f1+f2-uniformly-continuous
    (implies (and (i-limited x)
		  (realp x)
		  (i-close x y)
		  (realp y))
	     (i-close (f1+f2 x) (f1+f2 y)))
    :hints (("Goal"
	     :by (:functional-instance rcfn-uniformly-continuous
				       (rcfn f1+f2)))
	    ("Subgoal 3"
	     :in-theory (disable f1+f2))))))

;; We can also show that the product of f1 and f2 is continuous.  The
;; reasoning follows the one above very closely.

;; First, we define the function f1*f2.

(defun f1*f2 (x)
  (* (f1 x) (f2 x)))

;; The key lemma is that when x1 is close to x2 and y1 is close to y2,
;; x1*y1 is close to x2*y2.  As before, we get this in two steps:

(defthm close-times
  (implies (and (i-close x1 x2)
		(i-limited y))
	   (i-close (* x1 y) (* x2 y)))
  :hints (("Goal" :in-theory (enable i-close))
	  ("Goal''" :use ((:instance small*limited->small
				     (x (- x1 x2))
				     (y y)))
	   :in-theory (disable small*limited->small))))

(defthm close-times-2
  (implies (and (i-close x1 x2)
		(i-close y1 y2)
		(i-limited x1)
		(i-limited y1))
	   (i-close (* x1 y1) (* x2 y2)))
  :hints (("Goal"
	   :use ((:instance close-times (x1 x1) (x2 x2) (y y1))
		 (:instance close-times (x1 y1) (x2 y2) (y x2))
		 (:instance i-close-transitive
			    (x (* x1 y1))
			    (y (* x2 y1))
			    (z (* x2 y2)))
		 (:instance i-close-limited
			    (x x1)
			    (y x2)))
	   :in-theory (disable close-times i-close-transitive i-close-limited))))

;; And from that, the continuity of f1*f2 trivially follows:

(defthm f1*f2-continuous
  (implies (and (standard-numberp x)
		(realp x)
		(i-close x y)
		(realp y))
	   (i-close (f1*f2 x) (f1*f2 y)))
  :hints (("Goal" :in-theory (enable standards-are-limited))))

;; As before, we show that f1*f2 really is continuous, by instantiating
;; rcfn with f1*f2 in a proof:

(encapsulate
 nil
 (local (include-book "continuity"))

 (local
  (defthm f1*f2-uniformly-continuous
    (implies (and (i-limited x)
		  (realp x)
		  (i-close x y)
		  (realp y))
	     (i-close (f1*f2 x) (f1*f2 y)))
    :hints (("Goal"
	     :by (:functional-instance rcfn-uniformly-continuous
				       (rcfn f1*f2)))
	    ("Subgoal 3"
	     :in-theory (disable f1*f2))))))