1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
#|
This book presents a proof of the _classical_ Rolle's theorem. In
particular, it does not insist that its arguments be standard (as it
shouldn't).
Compare this with derivatives.lisp. The key step is the definition
of derivative-rdfn, where we use defun-std instead of defun. That
way, when we prove Rolle's theorem, we can use defthm-std and
dispense with the hypothesis that a and b are standard-numberp. This
works because rdfn, and rolles-critical-point are both standard
functions, and the only non-standard function in the original
statement of Rolles theorem was derivative-rdfn:
(defthm rolles-theorem
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(= (rdfn a) (rdfn b))
(< a b))
(equal (derivative-rdfn (rolles-critical-point a b)) 0)))
The rest of the proof is exactly the same as in derivatives.lisp.
|#
(in-package "ACL2")
(include-book "continuity")
(include-book "exercise4")
(include-book "exercise5")
;; The theorem i-close-reflexive in nsa.lisp forces ACL2 to back-chain
;; on acl2-numberp x. But, there's probably no need for that, since
;; we only use i-close in hypotheses when x is a number. So, it
;; should be safe the acl2-numberp hypothesis. We do that here. This
;; "improvement" should probably be migrated to axioms.lisp.
(local
(defthm i-close-reflexive-force
(implies (force (acl2-numberp x))
(i-close x x))
:hints (("Goal" :use (:instance i-close-reflexive)))))
;; First, we introduce rdfn - a Real Differentiable FunctioN of a
;; single argument. It is assumed to return standard values for
;; standard arguments, and to satisfy the differentiability criterion.
(encapsulate
((rdfn (x) t))
;; Our witness continuous function is the identity function.
(local (defun rdfn (x) x))
;; The function returns standard values for standard arguments.
(defthm rdfn-standard
(implies (standard-numberp x)
(standard-numberp (rdfn x)))
:rule-classes (:rewrite :type-prescription))
;; For real arguments, the function returns real values.
(defthm rdfn-real
(implies (realp x)
(realp (rdfn x)))
:rule-classes (:rewrite :type-prescription))
;; If x is a standard real and y1 and y2 are two arbitrary reals
;; close to x, then (rdfn(x)-rdfn(y1))/(x-y1) is close to
;; (rdfn(x)-rdfn(y2))/(x-y2). Also, (rdfn(x)-rdfn(y1))/(x-y1) is
;; limited. What this means is that the standard-part of that is a
;; standard number, and we'll call that the derivative of rdfn at x.
(defthm rdfn-differentiable
(implies (and (standard-numberp x)
(realp x)
(realp y1)
(realp y2)
(i-close x y1) (not (= x y1))
(i-close x y2) (not (= x y2)))
(and (i-limited (/ (- (rdfn x) (rdfn y1)) (- x y1)))
(i-close (/ (- (rdfn x) (rdfn y1)) (- x y1))
(/ (- (rdfn x) (rdfn y2)) (- x y2))))))
)
;; We want to prove the mean-value theorem. This states that there is
;; a point x in [a,b] so that the derivitate of rdfn at x is equal to
;; the slope of the line from (a, (rdfn a)) to (b, (rdfn b)). To
;; prove this, we first establish Rolle's theorem. This is a special
;; case of the mean-value theorem when (rdfn a) = (rdfn b) = 0. In
;; this case, we find an x in [a,b] so that the derivative of rdfn at
;; x is 0. This point x is easy to find. Simply look for the maximum
;; value of rdfn on [a,b]. If the maximum point is either a or b,
;; then that means rdfn is identically zero, so the derivative at any
;; point in (a,b) must be zero. Otherwise, we're talking about the
;; derivative of a local maximum (or minimum), and that is clearly
;; zero since the differentials at x swap signs coming from the left
;; and right.
;; The first major theorem is that rdfn is also continuous.
(encapsulate
()
;; Here is a simple lemma. If y is small and x/y is limited, then x
;; must be small (actually "smaller" than y).
(local
(defthm lemma-1
(implies (and (realp x)
(realp y)
(i-small y)
(not (= y 0))
(i-limited (/ x y)))
(i-small x))
:hints (("Goal"
:use ((:instance limited*large->large (y (/ y))))
:in-theory (disable limited*large->large)))))
;; Where this lemma comes in handy is that we know that ((rdfn x) -
;; (rdfn y))/(x - y) is limited for y close to x. From that, we can
;; conclude that (rdfn x) is close to (rdfn y) -- i.e., that rdfn is
;; continuous.
(defthm rdfn-continuous
(implies (and (standard-numberp x)
(realp x)
(i-close x y)
(realp y))
(i-close (rdfn x) (rdfn y)))
:hints (("Goal"
:use ((:instance rdfn-differentiable (y1 y) (y2 y))
(:instance lemma-1
(x (+ (rdfn x) (- (rdfn y))))
(y (+ x (- y)))))
:in-theory (enable-disable (i-close)
(rdfn-differentiable
lemma-1)))))
)
;; So now, we want to find the maximum of rdfn. We do this by
;; defining the functions of find-max-x from the rcfn case.
(defun find-max-rdfn-x-n (a max-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (> (rdfn (+ a (* i eps))) (rdfn max-x))
(find-max-rdfn-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-max-rdfn-x-n a max-x (1+ i) n eps))
max-x))
;; To use defun-std, we need to establish that the max-x-n function is
;; limited. We can do that by functional instantiation.
(defthm find-max-rdfn-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-max-rdfn-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x-n-limited
(find-max-rcfn-x-n find-max-rdfn-x-n)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x-n-limited))))
;; And so, we can use defun-std to get the maximum of rdfn on [a,b].
(defun-std find-max-rdfn-x (a b)
(if (and (realp a)
(realp b)
(< a b))
(standard-part (find-max-rdfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; Of course, we have to prove that it *is* the maximum, and we can do
;; that by functional instantiation.
(defthm find-max-rdfn-is-maximum
(implies (and (realp a)
(realp b)
(realp x)
(<= a x)
(<= x b)
(< a b))
(<= (rdfn x) (rdfn (find-max-rdfn-x a b))))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-is-maximum
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-is-maximum))))
;; We also need to prove that the maximum value is in the range
;; [a,b]. First, we find that it is >= a....again, by functional
;; instantiation.
(defthm find-max-rdfn-x->=-a
(implies (and (realp a)
(realp b)
(< a b))
(<= a (find-max-rdfn-x a b)))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x->=-a
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x->=-a))))
;; And it's <= b....by functional instantiation.
(defthm find-max-rdfn-x-<=-b
(implies (and (realp a)
(realp b)
(< a b))
(<= (find-max-rdfn-x a b) b))
:hints (("Goal"
:use ((:functional-instance find-max-rcfn-x-<=-b
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-max-rcfn-x-<=-b))))
;; Arrrgh! Now we have to do it all over again for minimums! Here's
;; the definition of the minimum function.
(defun find-min-rdfn-x-n (a min-x i n eps)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i)
(integerp n)
(<= i n)
(realp a)
(realp eps)
(< 0 eps))
(if (< (rdfn (+ a (* i eps))) (rdfn min-x))
(find-min-rdfn-x-n a (+ a (* i eps)) (1+ i) n eps)
(find-min-rdfn-x-n a min-x (1+ i) n eps))
min-x))
;; Of course, it's limited.
(defthm find-min-rdfn-x-n-limited
(implies (and (realp a)
(i-limited a)
(realp b)
(i-limited b)
(< a b))
(i-limited (find-min-rdfn-x-n a a
0 (i-large-integer)
(+ (- (* (/ (i-large-integer)) a))
(* (/ (i-large-integer)) b)))))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x-n-limited
(find-min-rcfn-x-n find-min-rdfn-x-n)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x-n-limited))))
;; And so we can use defun-std to get the "real" minimum value.
(defun-std find-min-rdfn-x (a b)
(if (and (realp a)
(realp b)
(< a b))
(standard-part (find-min-rdfn-x-n a
a
0
(i-large-integer)
(/ (- b a) (i-large-integer))))
0))
;; And we can prove that it is the minimum, by functional instantiation.
(defthm find-min-rdfn-is-minimum
(implies (and (realp a)
(realp b)
(realp x)
(<= a x)
(<= x b)
(< a b))
(<= (rdfn (find-min-rdfn-x a b)) (rdfn x)))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-is-minimum
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-is-minimum))))
;; And it's >= a.....
(defthm find-min-rdfn-x->=-a
(implies (and (realp a)
(realp b)
(< a b))
(<= a (find-min-rdfn-x a b)))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x->=-a
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x->=-a))))
;; ....and <= b.
(defthm find-min-rdfn-x-<=-b
(implies (and (realp a)
(realp b)
(< a b))
(<= (find-min-rdfn-x a b) b))
:hints (("Goal"
:use ((:functional-instance find-min-rcfn-x-<=-b
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(rcfn rdfn)))
:in-theory (disable find-min-rcfn-x-<=-b))))
;; Now, here's an important theorem. If the minimum is equal to the
;; maximum, then rdfn is constant throughout [a,b]. We prove this for
;; arbitrary continuous functions.
(defthm min=max->-constant-rcfn
(implies (and (realp a)
(realp b)
(realp x)
(< a b)
(<= a x)
(<= x b)
(= (rcfn (find-min-rcfn-x a b))
(rcfn (find-max-rcfn-x a b))))
(equal (equal (rcfn (find-min-rcfn-x a b)) (rcfn x)) t))
:hints (("Goal"
:use ((:instance find-min-rcfn-is-minimum)
(:instance find-max-rcfn-is-maximum))
:in-theory (disable find-min-rcfn-is-minimum
find-max-rcfn-is-maximum))))
;; So of course it's true for rdfn, our differentiable (and hence
;; continuous!) function.
(defthm min=max->-constant-rdfn
(implies (and (realp a)
(realp b)
(realp x)
(< a b)
(<= a x)
(<= x b)
(= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(equal (equal (rdfn (find-min-rdfn-x a b)) (rdfn x)) t))
:hints (("Goal"
:use ((:functional-instance min=max->-constant-rcfn
(find-min-rcfn-x-n find-min-rdfn-x-n)
(find-min-rcfn-x find-min-rdfn-x)
(find-max-rcfn-x-n find-max-rdfn-x-n)
(find-max-rcfn-x find-max-rdfn-x)
(rcfn rdfn)))
:in-theory (disable min=max->-constant-rcfn))))
;; Now, let's define the differential of rdfn. I probably should have
;; swapped x and (+ x eps), so that the denominator was positive. Oh well....
(defun differential-rdfn (x eps)
(/ (- (rdfn x) (rdfn (+ x eps))) (- eps)))
;; An obvious fact is that the differential is a real number.
(defthm realp-differential-rdfn
(implies (and (realp x)
(realp eps))
(realp (differential-rdfn x eps)))
:hints (("Goal"
:expand ((differential-rdfn x eps)))))
(in-theory (disable find-min-rdfn-x find-max-rdfn-x))
;; OK now, if the minimum value of rdfn on [a,b] is equal to its
;; maximum value, then the differential of the midpoint of [a,b]
;; (actually of any point in (a,b)) must be zero. This is because the
;; function is constant.
(defthm rolles-theorem-lemma-1
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< (abs eps) (/ (- b a) 2))
(= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(equal (differential-rdfn (/ (+ a b) 2) eps) 0))
:hints (("Goal"
:use ((:instance min=max->-constant-rdfn
(x (+ (* 1/2 a) (* 1/2 b))))
(:instance min=max->-constant-rdfn
(x (+ eps (* 1/2 a) (* 1/2 b)))))
:in-theory (disable min=max->-constant-rdfn))))
;; Otherwise, if max-x is in (a,b), then it's derivative must be
;; zero. This follows because for a positive eps, the differential of
;; max-x using eps is non-positive -- since rdfn at x+eps is <= rdfn
;; at x, since x is a maximum. I.e., rdfn is falling from x to x+eps.
(defthm rolles-theorem-lemma-2a
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b))
(<= (differential-rdfn (find-max-rdfn-x a b) eps) 0)))
;; Similarly, for a negative eps, rdfn is rising from x+eps to x, so
;; the eps-differntial of x is non-negative.
(defthm rolles-theorem-lemma-2b
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b))
(<= 0 (differential-rdfn (find-max-rdfn-x a b) (- eps)))))
;; Of course, the same claims follow for an internal minimum, min-x.
;; For a positive epsilon, the differential is non-positive.
(defthm rolles-theorem-lemma-2c
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b))
(<= 0 (differential-rdfn (find-min-rdfn-x a b) eps))))
;; And for a negative epsilon it is non-negative.
(defthm rolles-theorem-lemma-2d
(implies (and (realp a)
(realp b)
(< a b)
(realp eps)
(< 0 eps)
(< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b))
(<= (differential-rdfn (find-min-rdfn-x a b) (- eps)) 0)))
;; This is clearly something that belongs in nsa.lisp. The
;; standard-part of a small number is zero.
(local
(defthm standard-part-of-small
(implies (i-small eps)
(equal (standard-part eps) 0))
:hints (("Goal"
:in-theory (enable i-small)))))
;; Now, if a standard x is in (a,b) and eps is small, x-eps is in
;; (a,b). This is only true because x and a are standard!
(local
(defthm small-squeeze-standard-1
(implies (and (realp a) (standard-numberp a)
(realp x) (standard-numberp x)
(< a x)
(realp eps)
(< 0 eps)
(i-small eps))
(< a (- x eps)))
:hints (("Goal"
:use ((:instance standard-part-<-2 (x a) (y (- x eps))))))))
;; Similarly, x+eps is in (a,b).
(local
(defthm small-squeeze-standard-2
(implies (and (realp b) (standard-numberp b)
(realp x) (standard-numberp x)
(< x b)
(realp eps)
(< 0 eps)
(i-small eps))
(< (+ x eps) b))
:hints (("Goal"
:use ((:instance standard-part-<-2 (x (+ x eps)) (y b)))))))
;; We're particularly interested in when the internal point x is max-x
;; or min-x. So, we establish immediately that these points are
;; standard.
(defthm standard-find-min-max-rdfn
(implies (and (standard-numberp a)
(standard-numberp b))
(and (standard-numberp (find-min-rdfn-x a b))
(standard-numberp (find-max-rdfn-x a b))))
:hints (("Goal"
:in-theory (enable find-min-rdfn-x find-max-rdfn-x))))
;; So what this means is that if max-x is in (a,b), so are max-x+eps
;; and max-x-eps.
(defthm rolles-theorem-lemma-2e
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(< a (find-max-rdfn-x a b))
(< (find-max-rdfn-x a b) b)
(realp eps)
(< 0 eps)
(i-small eps))
(and (< a (- (find-max-rdfn-x a b) eps))
(< (+ (find-max-rdfn-x a b) eps) b)))
:hints (("Goal"
:use ((:instance small-squeeze-standard-1
(x (find-max-rdfn-x a b)))
(:instance small-squeeze-standard-2
(x (find-max-rdfn-x a b))))
:in-theory (disable small-squeeze-standard-1
small-squeeze-standard-2))))
;; And the same holds for min-x.
(defthm rolles-theorem-lemma-2f
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(< a (find-min-rdfn-x a b))
(< (find-min-rdfn-x a b) b)
(realp eps)
(< 0 eps)
(i-small eps))
(and (< a (- (find-min-rdfn-x a b) eps))
(< (+ (find-min-rdfn-x a b) eps) b)))
:hints (("Goal"
:use ((:instance small-squeeze-standard-1
(x (find-min-rdfn-x a b)))
(:instance small-squeeze-standard-2
(x (find-min-rdfn-x a b))))
:in-theory (disable small-squeeze-standard-1
small-squeeze-standard-2))))
;; Now, we define the critical point of rdfn on [a,b]. If min-x is
;; equal to max-x, then we arbitrarily pick the midpoint of a and b,
;; since that'll be an interior point. Otherwise, we pick whichever
;; of min-x or max-x is interior.
(defun rolles-critical-point (a b)
(if (equal (rdfn (find-min-rdfn-x a b)) (rdfn (find-max-rdfn-x a b)))
(/ (+ a b) 2)
(if (equal (rdfn (find-min-rdfn-x a b)) (rdfn a))
(find-max-rdfn-x a b)
(find-min-rdfn-x a b))))
;; OK now, if rdfn achieves its minimum at a, then the maximum is an
;; interior point.
(defthm rolles-theorem-lemma-3a
(implies (and (realp a)
(realp b)
(< a b)
(= (rdfn a) (rdfn b))
(not (= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(= (rdfn (find-min-rdfn-x a b)) (rdfn a)))
(and (< a (find-max-rdfn-x a b))
(< (find-max-rdfn-x a b) b)))
:hints (("Goal"
:use ((:instance find-max-rdfn-x->=-a)
(:instance find-max-rdfn-x-<=-b))
:in-theory (disable find-max-rdfn-x->=-a
find-max-rdfn-x-<=-b))))
;; If rdfn does not achieve its minimum at a, then the minimum itself
;; is an interior point.
(defthm rolles-theorem-lemma-3b
(implies (and (realp a)
(realp b)
(< a b)
(= (rdfn a) (rdfn b))
(not (= (rdfn (find-min-rdfn-x a b))
(rdfn (find-max-rdfn-x a b))))
(not (= (rdfn (find-min-rdfn-x a b)) (rdfn a))))
(and (< a (find-min-rdfn-x a b))
(< (find-min-rdfn-x a b) b)))
:hints (("Goal"
:use ((:instance find-min-rdfn-x->=-a)
(:instance find-min-rdfn-x-<=-b))
:in-theory (disable find-min-rdfn-x->=-a
find-min-rdfn-x-<=-b))))
;; If eps is a small number, then |eps| < midpoint(a,b). This key
;; fact means that the differentials at midpoint(a,b) are using
;; numbers inside the range (a,b).
(defthm rolles-theorem-lemma-4
(implies (and (realp a) (standard-numberp a)
(realp b) (standard-numberp b)
(< a b)
(realp eps)
(i-small eps))
(< (abs eps) (* (+ b (- a)) 1/2)))
:hints (("Goal"
:use ((:instance small-<-non-small
(x eps)
(y (* (+ b (- a)) 1/2)))
(:instance standard-small-is-zero
(x (* (+ b (- a)) 1/2))))
:in-theory (disable small-<-non-small))))
;; Now, we can define the derivative of rdfn at x. This is simply the
;; standard-part of an arbitrary infinitesimal differential at x.
;; Since the differential is arbitrary, we choose our favorite
;; epsilon.
;; But first, we need to show that the derivative of a standard point is
;; limited, so that the defun-std is permissible.
;; This (or something like it) is another theorem that should be in
;; nsa.lisp.
(local
(defthm small+limited-close
(implies (and (i-limited x)
(i-small eps))
(i-close x (+ eps x)))
:hints (("Goal" :in-theory (enable nsa-theory)))))
(defthm differential-rdfn-limited
(implies (and (realp x)
(standard-numberp x)
(realp eps)
(i-small eps))
(i-limited (differential-rdfn x eps)))
:hints (("Goal"
:use ((:instance rdfn-differentiable (x x) (y1 (+ eps x)) (y2 (+ eps x))))
:in-theory (disable rdfn-differentiable)))
)
(in-theory (disable differential-rdfn))
(defun-std derivative-rdfn (x)
(if (realp x)
(standard-part (differential-rdfn x (/ (i-large-integer))))
0))
(in-theory (disable derivative-rdfn))
;; We would like to rephrase the differentiability criteria in terms
;; of a small eps1 and eps2 instead of a y1, y2 close to x.
(defthm rdfn-differentiable-2a
(implies (and (realp x) (standard-numberp x)
(realp eps1) (i-small eps1) (not (= eps1 0))
(realp eps2) (i-small eps2) (not (= eps2 0)))
(i-close (differential-rdfn x eps1)
(differential-rdfn x eps2)))
:hints (("Goal"
:use ((:instance rdfn-differentiable
(y1 (+ x eps1))
(y2 (+ x eps2))))
:in-theory (enable-disable (differential-rdfn)
(rdfn-differentiable)))))
;; This is the ohter requirement of a differntiable function, namely
;; that the differntial is limited.
(defthm rdfn-differentiable-2b
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0)))
(i-limited (differential-rdfn x eps)))
:hints (("Goal"
:expand ((differential-rdfn x eps)))
("Goal'"
:use ((:instance rdfn-differentiable
(y1 (+ x eps))
(y2 (+ x eps))))
:in-theory (disable rdfn-differentiable))))
;; This theorem is clearly another candidate for inclusion on nsa.lisp!
(local
(defthm close-same-standard-part
(implies (and (i-close x y)
(i-limited x)
(i-limited y))
(equal (standard-part x) (standard-part y)))
:hints (("Goal" :in-theory (enable i-close i-small)))))
;; This rules converts instances of infinitesimal differntials into
;; the derivative. The syntaxp is there to keep the rule from looping
;; on the definition of derivative! This is probably a bad way of
;; going about the proof!
(defthm differential-rdfn-close
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(syntaxp (not (equal eps (/ (i-large-integer))))))
(equal (standard-part (differential-rdfn x eps))
(derivative-rdfn x)))
:hints (("Goal"
:use ((:instance rdfn-differentiable-2a
(eps1 eps)
(eps2 (/ (i-large-integer))))
(:instance rdfn-differentiable-2b)
(:instance rdfn-differentiable-2b
(eps (/ (i-large-integer))))
(:instance close-same-standard-part
(x (differential-rdfn x eps))
(y (differential-rdfn x (/ (i-large-integer))))))
:in-theory (enable-disable (derivative-rdfn)
(rdfn-differentiable-2a
rdfn-differentiable-2b
close-same-standard-part)))))
;; This is a major lemma. What it says if that if x is a number so
;; that a differential of rdfn at x with a given epsilon is positive,
;; but with -epsilon it's negative, then the derivative at x must be
;; zero.
(defthm derivative-==-0a
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(<= 0 (differential-rdfn x eps))
(<= (differential-rdfn x (- eps)) 0)
(syntaxp (not (equal eps (/ (i-large-integer))))))
(= 0 (derivative-rdfn x)))
:rule-classes nil ; added in v2-6 where "=" acts like "equal" just above.
:hints (("Goal"
:use ((:instance standard-part-<=
(x 0)
(y (differential-rdfn x eps)))
(:instance standard-part-<=
(x (differential-rdfn x (- eps)))
(y 0))
(:instance differential-rdfn-close)
(:instance differential-rdfn-close
(eps (- eps))))
:in-theory (disable derivative-rdfn
differential-rdfn-close
standard-part-<=))))
;; Of course, the same applies if for a given epsilon the differntials
;; are negative and for -epsilon they're positive. Hmmm, it looks
;; like the previous theorem is more general, so this is probably not
;; needed.
(defthm derivative-==-0b
(implies (and (realp x) (standard-numberp x)
(realp eps) (i-small eps) (not (= eps 0))
(<= (differential-rdfn x eps) 0)
(<= 0 (differential-rdfn x (- eps)))
(syntaxp (not (equal eps (/ (i-large-integer))))))
(= 0 (derivative-rdfn x)))
:rule-classes nil ; added in v2-6 where "=" acts like "equal" just above.
:hints (("Goal"
:use ((:instance standard-part-<=
(x (differential-rdfn x eps))
(y 0))
(:instance standard-part-<=
(x 0)
(y (differential-rdfn x (- eps))))
(:instance differential-rdfn-close)
(:instance differential-rdfn-close
(eps (- eps))))
:in-theory (disable derivative-rdfn
differential-rdfn-close
standard-part-<=))))
;; But it is enough to prove Rolle's theorem. The derivative of the
;; critical point is equal to zero. The critical point is either an
;; extreme value of rdfn interior to (a,b), or it's equal to the
;; midpoint of (a,b) if rdfn happens to be a constant function. In
;; either case, the derivative is zero.
(defthm-std rolles-theorem
(implies (and (realp a)
(realp b)
(= (rdfn a) (rdfn b))
(< a b))
(equal (derivative-rdfn (rolles-critical-point a b)) 0))
:hints (("Subgoal 3"
:use ((:instance rolles-theorem-lemma-1
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-4
(eps (/ (i-large-integer)))))
:in-theory (enable-disable (derivative-rdfn)
(rolles-theorem-lemma-1
rolles-theorem-lemma-4)))
("Subgoal 2"
:use ((:instance rolles-theorem-lemma-2c
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2d
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2f
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-3b)
(:instance derivative-==-0a
(x (find-min-rdfn-x a b))
(eps (/ (i-large-integer)))))
:in-theory (disable ;derivative-rdfn
rolles-theorem-lemma-2c
rolles-theorem-lemma-2d
rolles-theorem-lemma-2f
rolles-theorem-lemma-3b))
("Subgoal 1"
:use ((:instance rolles-theorem-lemma-2a
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2b
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-2e
(eps (/ (i-large-integer))))
(:instance rolles-theorem-lemma-3a)
(:instance derivative-==-0b
(x (find-max-rdfn-x a b))
(eps (/ (i-large-integer)))))
:in-theory (disable rolles-theorem-lemma-2a
rolles-theorem-lemma-2b
rolles-theorem-lemma-2e
rolles-theorem-lemma-3a))))
|