File: exercise8.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (432 lines) | stat: -rw-r--r-- 12,889 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#|

This book shows that the sum and product of two differentiable
functions is differentiable.  (See exercise6.lisp for the analogous
result about continuous functions.)

|#

(in-package "ACL2")

(include-book "derivatives")

;; First, we define a generic differentiable function, f1.  This is
;; just a rewrite of the definition in derivatives.lisp for rdfn.

(encapsulate
 ((f1 (x) t))

 ;; Our witness continuous function is the identity function.

 (local (defun f1 (x) x))

 ;; The function returns standard values for standard arguments.

 (defthm f1-standard
   (implies (standard-numberp x)
	    (standard-numberp (f1 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; For real arguments, the function returns real values.

 (defthm f1-real
   (implies (realp x)
	    (realp (f1 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; If x is a standard real and y1 and y2 are two arbitrary reals
 ;; close to x, then (f1(x)-f1(y1))/(x-y1) is close to
 ;; (f1(x)-f1(y2))/(x-y2).  Also, (f1(x)-f1(y1))/(x-y1) is
 ;; limited.  What this means is that the standard-part of that is a
 ;; standard number, and we'll call that the derivative of f1 at x.

 (defthm f1-differentiable
   (implies (and (standard-numberp x)
		 (realp x)
		 (realp y1)
		 (realp y2)
		 (i-close x y1) (not (= x y1))
		 (i-close x y2) (not (= x y2)))
	    (and (i-limited (/ (- (f1 x) (f1 y1)) (- x y1)))
		 (i-close (/ (- (f1 x) (f1 y1)) (- x y1))
			  (/ (- (f1 x) (f1 y2)) (- x y2))))))

 )

;; Now, we do the same for another generic differentiable function,
;; f2.

(encapsulate
 ((f2 (x) t))

 ;; Our witness continuous function is the identity function.

 (local (defun f2 (x) x))

 ;; The function returns standard values for standard arguments.

 (defthm f2-standard
   (implies (standard-numberp x)
	    (standard-numberp (f2 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; For real arguments, the function returns real values.

 (defthm f2-real
   (implies (realp x)
	    (realp (f2 x)))
   :rule-classes (:rewrite :type-prescription))

 ;; If x is a standard real and y1 and y2 are two arbitrary reals
 ;; close to x, then (f2(x)-f2(y1))/(x-y1) is close to
 ;; (f2(x)-f2(y2))/(x-y2).  Also, (f2(x)-f2(y1))/(x-y1) is
 ;; limited.  What this means is that the standard-part of that is a
 ;; standard number, and we'll call that the derivative of f2 at x.

 (defthm f2-differentiable
   (implies (and (standard-numberp x)
		 (realp x)
		 (realp y1)
		 (realp y2)
		 (i-close x y1) (not (= x y1))
		 (i-close x y2) (not (= x y2)))
	    (and (i-limited (/ (- (f2 x) (f2 y1)) (- x y1)))
		 (i-close (/ (- (f2 x) (f2 y1)) (- x y1))
			  (/ (- (f2 x) (f2 y2)) (- x y2))))))

 )

;; Now, we define the sum of f1 and f2.

(defun f1+f2 (x)
  (+ (f1 x) (f2 x)))

;; To show that f1+f2 is differentiable we concentrate on showing that
;; it satisfies the constraint rdfn-differentiable, since the others
;; are trivial.  First, we have to show that under suitable
;; hypothesis, the slope of the secant chord is limited.  This follows
;; from the fact that the slope of the chord at f1+f2 is the sum of
;; the separate slopes at f1 and f2.

(defthm f1+f2-differentiable-part1
  (implies (and (standard-numberp x)
		(realp x)
		(realp y1)
		(i-close x y1) (not (= x y1)))
	   (i-limited (/ (- (f1+f2 x) (f1+f2 y1)) (- x y1))))
  :hints (("Goal"
	   :use ((:instance i-limited-plus
			    (x (/ (- (f1 x) (f1 y1)) (- x y1)))
			    (y (/ (- (f2 x) (f2 y1)) (- x y1))))
		 (:instance f1-differentiable (y2 y1))
		 (:instance f2-differentiable (y2 y1)))
	   :in-theory (disable i-limited-plus f1-differentiable f2-differentiable))))

;; Next we need to show that if two chords at x are "close", so is their slope.

(encapsulate
 ()

 (local
  (defthm lemma-1
    (equal (i-close (+ a x) (+ a y))
	   (i-close (fix x) (fix y)))
    :hints (("Goal" :in-theory (enable i-close)))))

 (local
  (defthm lemma-2
    (equal (i-close (+ x a) (+ y a))
	   (i-close (fix x) (fix y)))
    :hints (("Goal" :in-theory (enable i-close)))))

 (defthm congruence-of-close-over-+
   (implies (and (i-close x1 x2)
		 (i-close y1 y2))
	    (i-close (+ x1 y1) (+ x2 y2)))
   :hints (("Goal" :use ((:instance i-close-transitive
				    (x (+ x1 y1))
				    (y (+ x1 y2))
				    (z (+ x2 y2))))
	    :in-theory (enable-disable (i-close) (i-close-transitive)))))
 )

(defthm f1+f2-differentiable-part2
  (implies (and (standard-numberp x)
		(realp x)
		(realp y1)
		(realp y2)
		(i-close x y1) (not (= x y1))
		(i-close x y2) (not (= x y2)))
	   (i-close (/ (- (f1+f2 x) (f1+f2 y1)) (- x y1))
		    (/ (- (f1+f2 x) (f1+f2 y2)) (- x y2))))
  :hints (("Goal"
	   :use ((:instance congruence-of-close-over-+
			    (x1 (+ (* (F1 X) (/ (+ X (- Y1))))
				   (- (* (F1 Y1) (/ (+ X (- Y1)))))))
			    (x2 (+ (* (F1 X) (/ (+ X (- Y2))))
				   (- (* (F1 Y2) (/ (+ X (- Y2)))))))
			    (y1 (+ (* (F2 X) (/ (+ X (- Y1))))
				   (- (* (F2 Y1) (/ (+ X (- Y1)))))))
			    (y2 (+ (* (F2 X) (/ (+ X (- Y2))))
				   (- (* (F2 Y2) (/ (+ X (- Y2))))))))
		 (:instance f1-differentiable)
		 (:instance f2-differentiable))
	   :in-theory (disable f1-differentiable f2-differentiable))))

;; Now, to show that indeed we have the f1+f2 is differentiable, we
;; force ACL2 to functionally instantiate rdfn with f1+f2.  The
;; specific theorem we use doesn't matter as much as the :hint.

(encapsulate
 ()

 (local
  (defthm f1+f2-continuous
    (implies (and (standard-numberp x)
		  (realp x)
		  (i-close x y)
		  (realp y))
	     (i-close (f1+f2 x) (f1+f2 y)))
    :hints (("Goal"
	     :by (:functional-instance rdfn-continuous
				       (rdfn f1+f2)))
	    ("Subgoal 3"
	     :use ((:instance f1+f2-differentiable-part1)
		   (:instance f1+f2-differentiable-part2))
	     :in-theory (disable f1+f2-differentiable-part1
				 f1+f2-differentiable-part2
				 f1+f2)))))
 )

;; Now, we do the same for f1*f2.  First, we define this function:

(defun f1*f2 (x)
  (* (f1 x) (f2 x)))

;; Again, we concentrate on showing that it satisfies the constraint
;; rdfn-differentiable, since the others are trivial.  First, we have
;; to show that under suitable hypothesis, the slope of the secant
;; chord is limited.  This follows from the fact that the slope of the
;; chord at f1*f2 is f1*slope(f2) + slope(f1)*f2.  Both slopes are
;; limited, and so are the f1, f2, since f1&f2 are standard functions
;; and we're taking their values at either a standard point or a point
;; close to a standard point.

(defthm f2-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y)
		 (realp y))
	    (i-close (f2 x) (f2 y)))
   :hints (("Goal"
	    :by (:functional-instance rdfn-continuous
				      (rdfn f2)))
; Changed by Matt K. after v4-3 for tau-system to include these under "Goal'"
; instead of under "Subgoal 3", then again after 6.0 for (most likely)
; tau-system changing "Goal'" to "Subgoal 2".
           ("Subgoal 2"
	    :use (:instance f2-differentiable)
	    :in-theory (disable f2-differentiable))))


(local
 (defthm f2-y1-limited
   (implies (and (realp x)
		 (standard-numberp x)
		 (realp y1)
		 (i-close x y1))
	    (i-limited (f2 y1)))
   :hints (("Goal"
	    :use ((:instance i-close-limited
			     (x (f2 x))
			     (y (f2 y1)))
		  (:instance f2-differentiable (y2 y1)))
	    :in-theory (enable-disable (standards-are-limited)
				       (i-close-limited f2-differentiable
                                                        ;; The following are
                                                        ;; also needed for v2-6.
                                                        I-CLOSE-SYMMETRIC
                                                        I-CLOSE-LARGE-2
                                                        ))))))

(encapsulate
 ()

 (local
  (defthm lemma-1
    (implies (and (realp x)
		  (standard-numberp x)
		  (realp y1)
		  (i-close x y1))
	     (i-limited (/ (* (f2 y1) (- (f1 x) (f1 y1))) (- x y1))))
    :hints (("Goal"
	     :use ((:instance f2-y1-limited)
		   (:instance i-limited-times
			      (x (f2 y1))
			      (y (/ (- (f1 x) (f1 y1)) (- x y1))))
		   (:instance f1-differentiable (y2 y1)))
	     :in-theory (disable f2-y1-limited i-limited-times f1-differentiable)))))

 (local
  (defthm lemma-2
    (implies (and (realp x)
		  (standard-numberp x)
		  (realp y1)
		  (i-close x y1))
	     (i-limited (/ (* (f1 x) (- (f2 x) (f2 y1))) (- x y1))))
    :hints (("Goal"
	     :use ((:instance standards-are-limited
			      (x (f1 x)))
		   (:instance i-limited-times
			      (x (f1 x))
			      (y (/ (- (f2 x) (f2 y1)) (- x y1))))
		   (:instance f2-differentiable (y2 y1)))
	     :in-theory (disable i-limited-times f2-differentiable)))))



 (defthm f1*f2-differentiable-part1
   (implies (and (realp x)
		 (standard-numberp x)
		 (realp y1)
		 (i-close x y1) (not (= x y1)))
	    (i-limited (/ (- (f1*f2 x) (f1*f2 y1)) (- x y1))))
   :hints (("Goal"
	    :use ((:instance i-limited-plus
			     (x (/ (* (f1 x) (- (f2 x) (f2 y1))) (- x y1)))
			     (y (/ (* (f2 y1) (- (f1 x) (f1 y1))) (- x y1))))
		  (:instance lemma-1)
		  (:instance lemma-2))
	    :in-theory (disable i-limited-plus lemma-1 lemma-2))))
 )

;; Next we need to show that if two chords at x are "close", so is their slope.

(defthm f2-uniformly-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y1)
		 (realp y1)
		 (i-close x y2)
		 (realp y2))
	    (i-close (f2 y1) (f2 y2)))
   :hints (("Goal"
	    :use ((:instance i-close-transitive
			     (x (f2 y1))
			     (y (f2 x))
			     (z (f2 y2))))
	    :in-theory (disable i-close-transitive))))

(defthm congruence-of-close-over-*
  (implies (and (i-close x1 x2)
		(i-close y1 y2)
		(i-limited x1)
		(i-limited y1))
	   (i-close (* x1 y1) (* x2 y2)))
  :hints (("Goal"
	   :use ((:instance i-small-plus
			    (x (* x1 (- y1 y2)))
			    (y (* y2 (- x1 x2))))
		 (:instance small*limited->small
			    (x (- y1 y2))
			    (y x1))
		 (:instance small*limited->small
			    (x (- x1 x2))
			    (y y2)))
	   :in-theory (enable-disable (i-close) (i-small-plus small*limited->small)))))

(encapsulate
 ()

 (local
  (defthm lemma-1
    (implies (and (standard-numberp x)
		  (realp x)
		  (i-close x y1)
		  (not (= x y1))
		  (realp y1)
		  (i-close x y2)
		  (not (= x y2))
		  (realp y2))
	     (i-close (/ (* (f2 y1) (- (f1 x) (f1 y1))) (- x y1))
		      (/ (* (f2 y2) (- (f1 x) (f1 y2))) (- x y2))))
    :hints (("Goal"
	     :use ((:instance congruence-of-close-over-*
			      (x1 (f2 y1))
			      (x2 (f2 y2))
			      (y1 (/ (- (f1 x) (f1 y1)) (- x y1)))
			      (y2 (/ (- (f1 x) (f1 y2)) (- x y2))))
		   (:instance f2-uniformly-continuous)
		   (:instance f1-differentiable)
		   (:instance f2-y1-limited))
	     :in-theory (disable congruence-of-close-over-* f2-uniformly-continuous
				 f1-differentiable f2-y1-limited)))))

 (local
  (defthm lemma-2
    (implies (and (standard-numberp x)
		  (realp x)
		  (i-close x y1)
		  (not (= x y1))
		  (realp y1)
		  (i-close x y2)
		  (not (= x y2))
		  (realp y2))
	     (i-close (/ (* (f1 x) (- (f2 x) (f2 y1))) (- x y1))
		      (/ (* (f1 x) (- (f2 x) (f2 y2))) (- x y2))))
    :hints (("Goal"
	     :use ((:instance congruence-of-close-over-*
			      (x1 (f1 x))
			      (x2 (f1 x))
			      (y1 (/ (- (f2 x) (f2 y1)) (- x y1)))
			      (y2 (/ (- (f2 x) (f2 y2)) (- x y2))))
		   (:instance f2-differentiable)
		   (:instance standards-are-limited
			      (x (f1 x))))
	     :in-theory (disable congruence-of-close-over-* f2-differentiable)))))

 (defthm f1*f2-differentiable-part2
   (implies (and (standard-numberp x)
		 (realp x)
		 (realp y1)
		 (realp y2)
		 (i-close x y1) (not (= x y1))
		 (i-close x y2) (not (= x y2)))
	    (i-close (/ (- (f1*f2 x) (f1*f2 y1)) (- x y1))
		     (/ (- (f1*f2 x) (f1*f2 y2)) (- x y2))))
   :hints (("Goal"
	    :use ((:instance congruence-of-close-over-+
			     (x1 (/ (* (f1 x) (- (f2 x) (f2 y1))) (- x y1)))
			     (x2 (/ (* (f1 x) (- (f2 x) (f2 y2))) (- x y2)))
			     (y1 (/ (* (f2 y1) (- (f1 x) (f1 y1))) (- x y1)))
			     (y2 (/ (* (f2 y2) (- (f1 x) (f1 y2))) (- x y2))))
		  (:instance lemma-1)
		  (:instance lemma-2))
	    :in-theory (disable congruence-of-close-over-+ lemma-1 lemma-2))))
 )

;; Now, to show that indeed we have the f1*f2 is differentiable, we
;; force ACL2 to functionally instantiate rdfn with f1*f2.  The
;; specific theorem we use doesn't matter as much as the :hint.

(encapsulate
 ()

 (local
  (defthm f1*f2-continuous
    (implies (and (standard-numberp x)
		  (realp x)
		  (i-close x y)
		  (realp y))
	     (i-close (f1*f2 x) (f1*f2 y)))
    :hints (("Goal"
	     :by (:functional-instance rdfn-continuous
				       (rdfn f1*f2)))
	    ("Subgoal 3"
	     :use ((:instance f1*f2-differentiable-part1)
		   (:instance f1*f2-differentiable-part2))
	     :in-theory (disable f1*f2-differentiable-part1
				 f1*f2-differentiable-part2
				 f1*f2)))))
 )