File: user-defs.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (362 lines) | stat: -rw-r--r-- 10,323 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
; Copyright (C) 2019, ForrestHunt, Inc.
; Written by Matt Kaufmann and J Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "MODAPP")

; ---
; G1 functions

(defun$ square (x) (* x x))

(defun$ cube (x) (* x (square x)))

(defun$ my-append1 (x y)
  (if (consp x)
      (cons (car x) (my-append1 (cdr x) y))
      y))

(defun$ my-rev (x)
  (if (consp x)
      (my-append1 (my-rev (cdr x)) (cons (car x) nil))
      nil))

(defun$ nats (n)
  (if (zp n)
      nil
      (cons n (nats (- n 1)))))

; This next pair illustrate the idea that a function, e.g., expt-2-and-expt-3,
; can have a badge in the badge-table without having a warrant, and then be
; used in a function with a warrant, e.g., expt-5.

(defun$ expt-2-and-expt-3 (x)
  (let ((x2 (* x x)))
    (mv x2 (* x x2))))

(defun$ expt-5 (x)
  (mv-let (x2 x3)
    (expt-2-and-expt-3 x)
    (* x2 x3)))

(defun$ ok-fnp (fn)
  (and (not (equal fn 'QUOTE))
       (not (equal fn 'IF))
       (tamep `(,fn X))))

; The following demonstrates that we can model a G1 function that uses a local
; stobj.  This also shows that not every subfunction of a tame function need be
; badged (i.e., count-atoms1 is unbadgeable because it traffics in stobjs, but
; its caller, count-atoms, can be badged).

(defstobj st (counter :type integer :initially 0))

(defun count-atoms1 (x st)
  (declare (xargs :stobjs (st)))
  (cond ((atom x)
         (update-counter (+ 1 (counter st)) st))
        (t (let ((st (count-atoms1 (car x) st)))
             (count-atoms1 (cdr x) st)))))

(defun$ count-atoms (x)
  (with-local-stobj
    st
    (mv-let (val st)
      (let ((st (count-atoms1 x st)))
        (mv (counter st) st))
      val)))

; ---
; G2 functions

(defun$ collect (lst fn)
  (cond ((endp lst) nil)
        (t (cons (apply$ fn (list (car lst)))
                 (collect (cdr lst) fn)))))

(defun$ sumlist (lst fn)
  (cond ((endp lst) 0)
        (t (+ (apply$ fn (list (car lst)))
              (sumlist (cdr lst) fn)))))

(defun$ sumlist-with-params (lst fn params)
  (cond ((endp lst) 0)
        (t (+ (apply$ fn (cons (car lst) params))
              (sumlist-with-params (cdr lst) fn params)))))

(defun$ filter (lst fn)
  (cond ((endp lst) nil)
        ((apply$ fn (list (car lst)))
         (cons (car lst) (filter (cdr lst) fn)))
        (t (filter (cdr lst) fn))))

(defun$ all (lst fn)
  (cond ((endp lst) t)
        (t (and (apply$ fn (list (car lst)))
                (all (cdr lst) fn)))))

(defun$ xists (lst fn)
; Note this function is Boolean, which is why we didn't define it with OR.
  (cond ((endp lst) nil)
        ((apply$ fn (list (car lst))) t)
        (t (xists (cdr lst) fn))))

(defun$ maxlist (lst fn)
  (cond ((endp lst) nil)
        ((endp (cdr lst)) (apply$ fn (list (car lst))))
        (t (max (apply$ fn (list (car lst)))
                (maxlist (cdr lst) fn)))))

(defun$ collect-on (lst fn)
  (cond ((endp lst) nil)
        (t (cons (apply$ fn (list lst))
                 (collect-on (cdr lst) fn)))))

(defun$ collect-tips (x fn)
  (cond ((atom x) (apply$ fn (list x)))
        (t (cons (collect-tips (car x) fn)
                 (collect-tips (cdr x) fn)))))

(defun$ apply$2 (fn x y)
  (apply$ fn (list x y)))

; These two functions illustrate getting further away from apply$.

(defun$ apply$2x (fn x y)
  (apply$2 fn x y))

(defun$ apply$2xx (fn x y)
  (apply$2x fn x y))

; A Russell-like function: The classic russell function would be

; ( defun$ russell (fn)
;   (not (apply$ fn (list fn))))

; But this abuses our classification system because fn is used both in a
; functional slot and a vanilla slot.  However, the following function raises
; the same problems as Russell's and is admissible here.

(defun$ russell (fn x)
  (not (apply$ fn (list x x))))

; Of interest, of course, is (russell 'russell 'russell) because the
; naive apply$ property would give us:
; (russell 'russell 'russell)                            {def russell}
; = (not (apply$ 'russell (list 'russell 'russell)))     {naive apply$}
; = (not (russell 'russell 'russell))

(defun$ foldr (lst fn init)
  (if (endp lst)
      init
      (apply$ fn
              (list (car lst)
                    (foldr (cdr lst) fn init)))))

(defun$ foldl (lst fn ans)
  (if (endp lst)
      ans
      (foldl (cdr lst)
             fn
             (apply$ fn (list (car lst) ans)))))

(defun$ collect-from-to (i max fn)
  (declare (xargs :measure (nfix (- (+ 1 (ifix max)) (ifix i)))))
  (let ((i (ifix i))
        (max (ifix max)))
    (cond
     ((> i max)
      nil)
     (t (cons (apply$ fn (list i))
              (collect-from-to (+ i 1) max fn))))))

(defun$ collect* (lst fn)
  (if (endp lst)
      nil
      (cons (apply$ fn (car lst))
            (collect* (cdr lst) fn))))

(defun$ collect2 (lst fn1 fn2)
  (if (endp lst)
      nil
      (cons (cons (apply$ fn1 (list (car lst)))
                  (apply$ fn2 (list (car lst))))
            (collect2 (cdr lst) fn1 fn2))))

(defun$ recur-by-collect (lst fn)
  (declare (xargs :measure (len lst)))
  (if (endp lst)
      nil
      (cons (car lst)
	    (recur-by-collect (collect (cdr lst) fn) fn))))

(defun$ prow (lst fn)
  (cond ((or (endp lst) (endp (cdr lst)))
         nil)
        (t (cons (apply$ fn (list (car lst) (cadr lst)))
                 (prow (cdr lst) fn)))))

(defun$ prow* (lst fn)
  (declare (xargs :measure (len lst)))
  (cond ((or (endp lst)
             (endp (cdr lst)))
         (apply$ fn (list lst lst)))
        (t (prow* (prow lst fn) fn))))

; These are nonrecursive mapping functions, the first of which
; is un-warranted because it returns multiple values.

(defun$ fn-2-and-fn-3 (fn x)
; Return (mv (fn x x) (fn x (fn x x)))
  (let ((x2 (apply$ fn (list x x))))
    (mv x2 (apply$ fn (list x x2)))))

(defun$ fn-5 (fn x)
  (mv-let (x2 x3)
    (fn-2-and-fn-3 fn x)
    (apply$ fn (list x2 x3))))

(defun$ map-fn-5 (lst fn)
  (if (endp lst)
      nil
      (cons (fn-5 fn (car lst))
            (map-fn-5 (cdr lst) fn))))

(defun$ sumlist-expr (lst expr alist)
  (cond ((endp lst) 0)
        (t (+ (ev$ expr (cons (cons 'x (car lst)) alist))
              (sumlist-expr (cdr lst) expr alist)))))

(defun$ twofer (lst fn xpr alist)
  (if (endp lst)
      nil
      (cons (cons (apply$ fn (list (car lst)))
                  (ev$ xpr (cons (cons 'TAIL lst) alist)))
            (twofer (cdr lst) fn xpr alist))))

; The following function stresses the method of eliminating tame calls of
; mapping functions from mapping functions.  The sumlist is tame.  The fact
; that it occurs in the apply$ is irrelevant, it just yields a number to be
; used as data for fn.  But the sumlist involves foldr and so eliminating it
; involves defining some helpers and proving that we did it right BEFORE we
; prove sumlist! is sumlist and foldr! is foldr.

(defun$ collect-a (lst fn)
  (cond ((endp lst) nil)
        (t (cons (apply$ fn (list
                             (sumlist (nats (car lst))
                                      '(lambda (i)
                                         (foldr (nats i)
                                                '(lambda (j k)
                                                   (binary-* (square j) k))
                                                '1)))))
                 (collect-a (cdr lst) fn)))))

(defun$ collect-b (lst fn)
  (cond ((endp lst) nil)
        (t (cons (apply$ fn (list (sumlist (nats (car lst)) fn)))
                 (collect-b (cdr lst) fn)))))

(defun$ collect-c (lst fn1 fn2)
  (cond ((endp lst) nil)
        (t (cons (apply$ fn1 (list (sumlist (nats (car lst)) fn2)))
                 (collect-c (cdr lst) fn1 fn2)))))

(defun$ collect-d (lst fn1 fn2)
  (if (endp lst)
      nil
      (cons (cons (apply$ fn1 (list (car lst)))
                  (apply$ fn2 (list (car lst))))
            (collect-d (cdr lst) fn1 fn2))))

(defun$ collect-e (lst fn)
  (if (endp lst)
      nil
      (cons (collect-d lst fn '(lambda (x) (binary-+ '10 (square x))))
            (collect-e (cdr lst) fn))))

(defun$ my-apply-2 (fn1 fn2 x)
  (list (apply$ fn1 x) (apply$ fn2 x)))

(defun$ my-apply-2-1 (fn x)
  (my-apply-2 fn fn x))

; These are G2 functions even though they do not have :FN/:EXPR args.

(defun$ collect-my-rev (lst)
  (collect lst 'MY-REV))

(defun$ my-append2 (x y)
  (foldr x 'CONS y))

(defun$ sqnats (x)
  (collect (filter x 'NATP) 'SQUARE))

(defun$ sum-of-products (lst)
  (sumlist lst
           '(LAMBDA (X)
                    (FOLDR X
                           '(LAMBDA (I A)
                                    (BINARY-* I A))
                           '1))))

(defun$ collect-composition (lst fn gn)
  (if (endp lst)
      nil
      (cons (apply$ fn (list (apply$ gn (list (car lst)))))
            (collect-composition (cdr lst) fn gn))))

(defun$ collect-x1000 (lst fn)
  (collect-composition lst fn '(lambda (x) (binary-* '1000 x))))

(defun$ collect-x1000-caller (lst fn)
  (if (endp lst)
      nil
      (cons (collect-x1000 (car lst) fn)
            (collect-x1000-caller (cdr lst) fn))))

(defun$ guarded-collect (lst fn)
  (declare (xargs :guard (true-listp lst)))
  (if (endp lst)
      nil
      (cons (apply$ fn (list (car lst)))
            (guarded-collect (cdr lst) fn))))

; And two lexicographic measures, one of length 2 and the other of length 3.

(defun$ ack$ (fn k n m)
  (declare (xargs :measure (llist k m)
                  :well-founded-relation l<))
  (if (zp k)
      (apply$ fn (list (+ 1 n)))
      (if (zp m)
          (if (equal k 2)
              0
              (if (equal k 3)
                  1
                  n))
          (ack$ fn
                (- k 1)
                (ack$ fn k n (- m 1))
                n))))

(defun$ silly$ (fn k n m)
  (declare (xargs :measure (llist k n m)
                  :well-founded-relation l<))
  (if (zp k)
      (apply$ fn (list n))
      (if (zp n)
          (apply$ fn (list k))
          (if (zp m)
              (apply$ fn (list n))
              (silly$ fn
                      (- k 1)
                      (silly$ fn
                              k
                              (- n 1)
                              (silly$ fn
                                      k
                                      n
                                      (- m 1)))
                      m)))))