1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
; Copyright (C) 2019, ForrestHunt, Inc.
; Written by Matt Kaufmann and J Moore
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
(in-package "MODAPP")
(include-book "user-defs")
; -----------------------------------------------------------------
; Some Sample Theorems about Mapping Functions
; Theorems just showing some evaluations:
(defthm collect-example
(equal (collect '(1 2 3) '(LAMBDA (X) (CONS 'A X)))
'((A . 1) (A . 2) (A . 3)))
:rule-classes nil)
(defthm collect-collect-example
(implies (warrant collect)
(equal (collect '((1 2 3) (4 5 6))
'(LAMBDA (X)
(COLLECT X '(LAMBDA (X) (CONS 'A X)))))
'(((A . 1) (A . 2) (A . 3))
((A . 4) (A . 5) (A . 6)))))
:rule-classes nil
:hints (("Goal" :expand ((:free (x) (hide x))))))
(defthm recur-by-collect-example
(equal (recur-by-collect '(1 1 1)
'(LAMBDA (X) (BINARY-+ '1 X)))
'(1 2 3))
:rule-classes nil)
; A theorem showing that functions can be data, i.e., we can apply mapping functions
; to mapping functions, as long as the data functions are tame.
(defthm collect*-collect-example
(implies (warrant square collect)
(equal (collect* '(((1 2 3) (LAMBDA (X) (CONS 'A X)))
((4 5 6 7) SQUARE)
(((20 21 22)
(30 31 32)
(40 41 42))
(LAMBDA (Y)
(COLLECT Y '(LAMBDA (Z) (CONS 'C Z)))))
)
'COLLECT)
'(((A . 1)(A . 2)(A . 3))
(16 25 36 49)
(((C . 20) (C . 21) (C . 22))
((C . 30) (C . 31) (C . 32))
((C . 40) (C . 41) (C . 42)))
)))
:rule-classes nil
:hints
(("Goal"
:in-theory
(disable (:executable-counterpart collect)
(:executable-counterpart collect*)))))
; Theorems about general relationships
(defthm collect-my-append1
(equal (collect (my-append1 a b) fn)
(my-append1 (collect a fn)
(collect b fn))))
(defthm sumlist-my-append1
(equal (sumlist (my-append1 a b) u)
(+ (sumlist a u)
(sumlist b u))))
(defthm all-my-append1
(equal (all (my-append1 a b) fn)
(and (all a fn) (all b fn))))
(defthm xists-my-append1
(equal (xists (my-append1 a b) fn)
(if (xists a fn)
t
(xists b fn))))
(defthm len-filter
(<= (len (filter lst fn)) (len lst))
:rule-classes :linear)
(defthm filter-v-all
(implies (true-listp lst)
(iff (equal (filter lst fn) lst)
(all lst fn)))
:hints (("Subgoal *1/3.2'" :in-theory (disable len-filter)
:use ((:instance len-filter (lst (cdr lst)) (fn fn))))))
(defthm filter-v-xists
(iff (filter lst fn)
(xists lst fn))
:rule-classes nil)
; We show some theorems about FOLDR further below.
; Theorems about concrete uses of mapping functions.
(encapsulate nil
(local (include-book "arithmetic-5/top" :dir :system))
(defthm sumlist-nats
(implies (and (warrant square)
(natp n))
(equal (sumlist (nats n) 'SQUARE)
(/ (* n (+ n 1) (+ (* 2 n) 1))
6)))
:hints (("Goal" :expand ((:free (x) (HIDE x)))))))
; If lst is a true-list and every element of lst is also, then reversing each element twice
; leaves lst unchanged:
(defthm rev-rev-version-1
(implies (and (warrant my-rev)
(true-listp lst)
(all lst 'true-listp))
(equal (collect (collect lst 'my-rev) 'my-rev) lst)))
; We can actually accomplish an append and a reverse via FOLDRs. So after we
; establish that, we repeat the above theorem but this time without referring
; to my-rev.
(defthm foldr-as-my-append1
(equal (foldr x 'CONS y)
(my-append1 x y)))
(defthm foldr-as-my-rev
(implies (warrant foldr)
(equal (foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)
(my-rev x))))
(defthm rev-rev-version-2
(implies (and (warrant foldr)
(true-listp lst)
(all lst 'true-listp))
(equal (collect (collect lst
'(lambda (x)
(foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)))
'(lambda (x)
(foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)))
lst)))
; And ALL and COLLECT are also FOLDRs, so we can make this an all FOLDR show:
(defthm rev-rev-version-3
(implies (and (warrant foldr)
(true-listp lst)
(foldr lst
'(LAMBDA (X Y)
(IF (TRUE-LISTP X) Y 'NIL))
t))
(equal (foldr
(foldr lst
'(LAMBDA (X Y)
(CONS (foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)
Y))
nil)
'(LAMBDA (X Y)
(CONS (foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)
Y))
nil)
lst)))
; A few theorems manipulating mapping functions and the functions they
; apply.
; Here is a way to move a constant factor out of a sumlist regardless of the
; names of the variables.
(defthm sumlist-binary-*-constant
(implies (tamep body)
(equal (sumlist lst (lamb (list v) (list 'binary-* (list 'quote const) body)))
(* const (sumlist lst (lamb (list v) body))))))
(defthm lamb-x-x-is-identity
(implies (symbolp x)
(fn-equal (lamb (list x) x) 'identity))
:hints (("Goal" :in-theory (enable fn-equal))))
; The hint below is only provided to show that the theorem is proved by
; rewriting, not induction.
(defthm example-of-loop$-rewriting
(equal (sumlist (my-append1 aaa bbb) (lamb '(x) '(binary-* '2 x)))
(+ (* 2 (sumlist aaa 'identity))
(* 2 (sumlist bbb 'identity))))
:hints (("Goal" :do-not-induct t))
:rule-classes nil)
; A couple of nice foldr theorems. The first two are redundant; they were
; critical as rewrite rules in our rev-rev versions above. We repeat them here
; just to summarize the relations with foldr. The rest These are really just
; designed to illustrate the relationships, not to be used as rewrites.
(defthm foldr-as-my-append1
(equal (foldr x 'CONS y)
(my-append1 x y)))
(defthm foldr-as-my-rev
(implies (warrant foldr)
(equal (foldr x
'(LAMBDA (X Y)
(FOLDR Y 'CONS (CONS X 'NIL)))
nil)
(my-rev x))))
; The theorem below, which is not being stored as a rule, illustrates the most
; general fact we can think of relating COLLECT and FOLDR:
(defthm general-collect-is-a-foldr
(implies (and (not (equal fn 'QUOTE))
(not (equal fn 'IF))
(symbolp x)
(symbolp y)
(not (eq x y))
(tamep `(,fn ,x)))
(equal (collect lst fn)
(foldr lst
`(lambda (,x ,y)
(cons (,fn ,x) ,y))
nil)))
:rule-classes nil)
; But this rule is not useful as a rewrite rule because x and y are free
; variables. Furthermore, if the goal is to rewrite COLLECTs into FOLDRs, it's
; not necessary to be so general: we could just choose the x and y we want to
; use. But we're not interested in rewriting in either direction here so we
; make this (and subsequent theorems) :rule-classes nil.
; We use a convenient abbreviation for the hypotheses we'll see over and over
; here.
(defthm foldr-as-collect
(implies (force (ok-fnp fn))
(equal (foldr lst
`(LAMBDA (X Y)
(CONS (,fn X) Y))
nil)
(collect lst fn)))
:rule-classes nil)
(defthm foldr-as-sumlist
(implies (ok-fnp fn)
(equal (foldr lst
`(LAMBDA (X Y)
(BINARY-+ (,fn X) Y))
0)
(sumlist lst fn)))
:rule-classes nil)
(defthm foldr-as-filter
(implies (ok-fnp fn)
(equal (foldr lst
`(LAMBDA (X Y)
(IF (,fn X) (CONS X Y) Y))
nil)
(filter lst fn)))
:rule-classes nil)
(defthm foldr-as-all
(implies (ok-fnp fn)
(equal (foldr lst
`(LAMBDA (X Y)
(IF (,fn X) Y 'NIL))
t)
(all lst fn)))
:rule-classes nil)
(defthm foldr-as-xists
(implies (ok-fnp fn)
(equal (foldr lst
`(LAMBDA (X Y)
(IF (,fn X) 'T Y))
nil)
(xists lst fn)))
:rule-classes nil)
(defthm maxlist-non-nil
(implies (and (ok-fnp fn)
(all (collect lst fn) 'ACL2-NUMBERP))
(iff (maxlist lst fn)
(consp lst)))
:rule-classes nil)
(defthm foldr-as-maxlist
(implies (and (ok-fnp fn)
(all (collect lst fn) 'ACL2-NUMBERP))
(equal (foldr lst `(LAMBDA (X Y)
(IF (EQUAL Y 'NIL)
(,fn X)
(MAX (,fn X) Y)))
nil)
(maxlist lst fn)))
:rule-classes nil)
|