File: prelim.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (327 lines) | stat: -rw-r--r-- 13,701 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
(in-package "RTL")

(include-book "rtl/rel11/lib/top" :dir :system)

(include-book "arithmetic-5/top" :dir :system)

(in-theory #!acl2(disable |(mod (+ x y) z) where (<= 0 z)| |(mod (+ x (- (mod a b))) y)| |(mod (mod x y) z)| |(mod (+ x (mod a b)) y)|
                    simplify-products-gather-exponents-equal mod-cancel-*-const cancel-mod-+ reduce-additive-constant-<
                    ash-to-floor |(floor x 2)| |(equal x (if a b c))| |(equal (if a b c) x)| MOD-THEOREM-ONE-B))

(include-book "fsqrt64")

;; We impose the following constraints on the inputs of fsqrt64:

(defund input-constraints (opa fnum rin)
  (and (bvecp opa 64)
       (member fnum '(0 1 2))
       (bvecp rin 32)
       (= (bitn rin 15) 0)
       (= (bits rin 12 8) 0)))

;; Our ultimate objective is the following theorem:

;; (defthm fsqrt64-correct
;;   (implies (input-constraints opa fnum rin)
;;            (let* ((f (case fnum (0 (hp)) (1 (sp)) (2 (dp))))
;;                   (fmtw (+ 1 (expw f) (sigw f)))
;;                   (dnp (bitn rin 25))
;;                   (fzp (bitn rin 24))
;;                   (rmode (bits rin 23 22)))
;;              (mv-let (data flags) (fsqrt64 opa fnum fzp dnp rmode)
;;                (let ((r (logior rin flags)))
;;                  (mv-let (data-spec r-spec)
;;                          (arm-fsqrt-spec (bits opa (1- fmtw) 0) rin f)
;;                    (and (equal data data-spec)
;;                         (equal r r-spec))))))))

;; In order to address the lack of modularity of the ACL2 code, we
;; take the following approach.

;; First, we introduce constrained constants representing the inputs:

(encapsulate (((opa) => *) ((fnum) => *) ((rin) => *))
  (local (defun opa () 0))
  (local (defun fnum () 0))
  (local (defun rin () 0))
  (defthm input-constraints-lemma
    (input-constraints (opa) (fnum) (rin))
    :rule-classes ()))

(defund dnp () (bitn (rin) 25))
(defund fzp () (bitn (rin) 24))
(defund rmode () (bits (rin) 23 22))
(defund f () (case (fnum) (0 (hp)) (1 (sp)) (2 (dp))))

;; In terms of these constants, we shall define constants corresponding to the local
;; variables of fdiv64, culminating in the constants (d) and (flags), corresponding to
;; the outputs.

;; The constant definitions will be derived from that of fsqrt64 in such a way that
;; the proof of the following will be trivial:

;; (defthm fsqrt64-lemma
;;   (mv-let (d flags) (fsqrt64 (opa) (fnum) (fzp) (dnp) (rmode))
;;     (and (equal (d) d)
;;          (equal (flags) flags))))

;; The real work will be the proof of the following theorem:

;; (defthm fsqrt64-main
;;   (let ((fmtw (+ 1 (expw (f)) (sigw (f)))))
;;     (mv-let (d-spec r-spec) (arm-sqrt-spec (opa) (rin) (fpfmt))
;;       (and (equal (d) d-spec)
;;            (equal (r) r-spec))))

;; The following is an immediate consequence of the two preceding results:

;; (defthmd lemma-to-be-functionally-instantiated
;;   (let* ((f (case (fnum) (0 (hp)) (1 (sp)) (2 (dp))))
;;          (fmtw (+ 1 (expw f) (sigw f)))
;;          (dnp (bitn (rin) 25))
;;          (fzp (bitn (rin) 24))
;;          (rmode (bits (rin) 23 22)))
;;     (mv-let (data flags) (fsqrt64 (opa) (fnum) fzp dnp rmode)
;;       (mv-let (data-spec r-spec) (arm-sqrt-spec (bits (opa) (1- fmtw) 0) (rin) f)
;;         (and (equal data data-spec)
;;              (equal (logior (rin) flags) r-spec))))))

;; The desired theorem can then be derived by functional instantiation.

;; In this book, we'll define the constants and prove fsqrt64-lemma.

;;*******************************************************************************
;; fsqrt64
;;*******************************************************************************

(defund signa () (mv-nth 0 (mv-list 5 (analyze (opa) (fnum) (fzp) (bits 0 7 0)))))
(defund expa () (mv-nth 1 (mv-list 5 (analyze (opa) (fnum) (fzp) (bits 0 7 0)))))
(defund mana () (mv-nth 2 (mv-list 5 (analyze (opa) (fnum) (fzp) (bits 0 7 0)))))
(defund classa () (mv-nth 3 (mv-list 5 (analyze (opa) (fnum) (fzp) (bits 0 7 0)))))
(defund flags-a () (mv-nth 4 (mv-list 5 (analyze (opa) (fnum) (fzp) (bits 0 7 0)))))

(defund data-special ()
  (mv-nth 0 (mv-list 2 (specialcase (signa) (opa) (classa) (fnum) (dnp) (flags-a)))))
(defund flags-special ()
  (mv-nth 1 (mv-list 2 (specialcase (signa) (opa) (classa) (fnum) (dnp) (flags-a)))))

(defund expinc-0 () (logand1 (log= (classa) 4) (log= (rmode) (rmodeup))))

(defund siga () (mv-nth 0 (mv-list 3 (normalize (expa) (mana) (fnum)))))
(defund expshft () (mv-nth 1 (mv-list 3 (normalize (expa) (mana) (fnum)))))
(defund expq () (mv-nth 2 (mv-list 3 (normalize (expa) (mana) (fnum)))))

(defund expodd () (bitn (expshft) 0))

(defund d-sqrtpow2 () (mv-nth 0 (mv-list 2 (sqrtpow2 (expq) (expodd) (rmode) (fnum)))))
(defund flags-sqrtpow2 () (mv-nth 1 (mv-list 2 (sqrtpow2 (expq) (expodd) (rmode) (fnum)))))

(defund rp-1 () (mv-nth 0 (mv-list 5 (firstiter (siga) (expodd)))))
(defund rn-1 () (mv-nth 1 (mv-list 5 (firstiter (siga) (expodd)))))
(defund qn-1 () (mv-nth 2 (mv-list 5 (firstiter (siga) (expodd)))))
(defund q-1 () (mv-nth 3 (mv-list 5 (firstiter (siga) (expodd)))))
(defund i-1 () (mv-nth 4 (mv-list 5 (firstiter (siga) (expodd)))))

(defund qp-1 () (bits 0 53 0))

(defund expinc-1 () (logand (expinc-0) (log= (qn-1) 0)))

(defund n ()
  (case (fnum)
    (2 (bits 27 4 0))
    (1 (bits 13 4 0))
    (0 (bits 6 4 0))
    (t 0)))

(defund q-n () (mv-nth 0 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))
(defund rp-n () (mv-nth 2 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))
(defund rn-n () (mv-nth 3 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))
(defund qp-n () (mv-nth 4 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))
(defund qn-n () (mv-nth 5 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))
(defund expinc-n () (mv-nth 6 (mv-list 7 (fsqrt64-loop-0 1 (n) (fnum) (q-1) (i-1) (rp-1) (rn-1) (qp-1) (qn-1) (expinc-1)))))

(defund exprnd () (bits (if1 (expinc-n) (+ (expq) 1) (expq)) 10 0))

(defund qp-shft ()
  (case (fnum)
    (0 (bits (qp-n) 53 42))
    (1 (bits (qp-n) 53 28))
    (t (qp-n))))
(defund qn-shft ()
  (case (fnum)
    (0 (bits (qn-n) 53 42))
    (1 (bits (qn-n) 53 28))
    (t (qn-n))))

(defund qtrunc () (mv-nth 0 (mv-list 3 (computeq (qp-shft) (qn-shft) (rp-n) (rn-n) (fnum) (true$)))))
(defund qinc () (mv-nth 1 (mv-list 3 (computeq (qp-shft) (qn-shft) (rp-n) (rn-n) (fnum) (true$)))))
(defund stk () (mv-nth 2 (mv-list 3 (computeq (qp-shft) (qn-shft) (rp-n) (rn-n) (fnum) (true$)))))

(defund qrnd () (mv-nth 0 (mv-list 4 (rounder (qtrunc) (qinc) (stk) 0 (exprnd) (rmode) (fnum)))))
(defund inx () (mv-nth 1 (mv-list 4 (rounder (qtrunc) (qinc) (stk) 0 (exprnd) (rmode) (fnum)))))
(defund qrndden () (mv-nth 2 (mv-list 4 (rounder (qtrunc) (qinc) (stk) 0 (exprnd) (rmode) (fnum)))))
(defund inxden () (mv-nth 3 (mv-list 4 (rounder (qtrunc) (qinc) (stk) 0 (exprnd) (rmode) (fnum)))))

(defund data-final () (mv-nth 0 (mv-list 2 (final (qrnd) (inx) (qrndden) (inxden) 0 (exprnd) (rmode) (fzp) (fnum) (flags-a)))))
(defund flags-final () (mv-nth 1 (mv-list 2 (final (qrnd) (inx) (qrndden) (inxden) 0 (exprnd) (rmode) (fzp) (fnum) (flags-a)))))

(defund data ()
  (if1 (logior1 (logior1 (logior1 (logior1 (log= (classa) 0) (log= (classa) 1))
                                  (log= (classa) 2))
                         (log= (classa) 3))
                (signa))
       (data-special)
       (if1 (logand1 (log= (classa) 4) (log= (mana) 0))
            (d-sqrtpow2)
            (data-final))))

(defund flags ()
  (if1 (logior1 (logior1 (logior1 (logior1 (log= (classa) 0) (log= (classa) 1))
                                  (log= (classa) 2))
                         (log= (classa) 3))
                (signa))
       (flags-special)
       (if1 (logand1 (log= (classa) 4) (log= (mana) 0))
            (flags-sqrtpow2)
            (flags-final))))

(defthmd fsqrt64-lemma
  (mv-let (data flags) (fsqrt64 (opa) (fnum) (fzp) (dnp) (rmode))
    (and (equal (data) data)
         (equal (flags) flags)))
  :hints (("Goal" :do-not '(preprocess) :expand :lambdas
           :in-theory '(signa expa mana classa flags-a data-special flags-special expinc-0 siga expshft expq expodd d-sqrtpow2
	                flags-sqrtpow2 rp-1 rn-1 qn-1 q-1 i-1 qp-1 expinc-1 n q-n rp-n rn-n qp-n qn-n expinc-n exprnd qp-shft
			qn-shft qtrunc qinc stk qrnd inx qrndden inxden data-final flags-final data flags fsqrt64))))

;; It's usually a good idea to disable the executable counterpart of any function that depends
;; on a constrained function:

(in-theory (disable (input-constraints) (signa) (expa) (mana) (classa) (flags-a) (data-special) (flags-special) (expinc-0) (siga)
                    (expshft) (expq) (expodd) (d-sqrtpow2) (flags-sqrtpow2) (rp-1) (rn-1) (qn-1) (q-1) (i-1) (qp-1) (expinc-1)
		    (n) (q-n) (rp-n) (rn-n) (qp-n) (qn-n) (expinc-n) (exprnd) (qp-shft) (qn-shft) (qtrunc) (qinc) (stk) (qrnd)
		    (inx) (qrndden) (inxden) (data-final) (flags-final) (data) (flags) (dnp) (fzp) (rmode) (f)))

;; let's also disable all the functions defined by the model and enable them only as needed:

(in-theory (disable analyze clz53-loop-0 clz53-loop-1 clz53-loop-2 clz53 computeq rshft64 rounder final specialcase
                    normalize sqrtpow2 firstiter nextdigit nextrem nextroot fsqrt64-loop-0 fsqrt64
                    (analyze) (clz53-loop-0) (clz53-loop-1) (clz53-loop-2) (clz53) (computeq) (rshft64) (rounder) (final)
		    (specialcase) (normalize) (sqrtpow2) (firstiter) (nextdigit) (nextrem) (nextroot) (fsqrt64-loop-0) (fsqrt64)))


;;*******************************************************************************
;; fsqrt64-loop-0
;;*******************************************************************************

;; We define the sequences of values (q j), (i j), (rp j), (rn j), (qp j), (qn j),
;; and (expinc j) as a set of mutually recursive functions, as they are computed by
;; fsqrt64-loop-0, and prove that the constants (rp-n), etc., defined above are
;; related to these functions as follows:
;;   (equal (rp-n) (rp (n)))
;;   (equal (rn-n) (rn (n)))
;;   (equal (qp-n) (qp (n)))
;;   (equal (qn-n) (qn (n)))
;;   (equal (expinc-n) (expinc (n)))

(mutual-recursion

(defund q (j)
  (declare (xargs :measure (* 2 (nfix j))))
  (if (or (zp j) (= j 1))
      (q-1)
    (nextdigit (rp (1- j)) (rn (1- j)) (i (1- j)) (1- j))))

(defund i (j)
  (declare (xargs :measure (1+ (* 2 (nfix j)))))
  (if (zp j)
      8
    (if (= j 1)
        (i-1)
      (if1 (log= (1- j) 1)
           (+ (i (1- j)) (q j))
	 (i (1- j))))))

(defund rp (j)
  (declare (xargs :measure (1+ (* 2 (nfix j)))))
  (if (or (zp j) (= j 1))
      (rp-1)
    (mv-nth 0 (mv-list 2 (nextrem (rp (1- j)) (rn (1- j)) (qp (1- j)) (qn (1- j)) (q j) (1- j) (fnum))))))

(defund rn (j)
  (declare (xargs :measure (1+ (* 2 (nfix j)))))
  (if (or (zp j) (= j 1))
      (rn-1)
    (mv-nth 1 (mv-list 2 (nextrem (rp (1- j)) (rn (1- j)) (qp (1- j)) (qn (1- j)) (q j) (1- j) (fnum))))))

(defund qp (j)
  (declare (xargs :measure (1+ (* 2 (nfix j)))))
  (if (or (zp j) (= j 1))
      (qp-1)
    (mv-nth 0 (mv-list 2 (nextroot (qp (1- j)) (qn (1- j)) (q j) (1- j))))))

(defund qn (j)
  (declare (xargs :measure (1+ (* 2 (nfix j)))))
  (if (or (zp j) (= j 1))
      (qn-1)
    (mv-nth 1 (mv-list 2 (nextroot (qp (1- j)) (qn (1- j)) (q j) (1- j))))))
)

(defund expinc (j)
  (if (or (zp j) (= j 1))
      (expinc-1)
    (logand (expinc (1- j))
            (if1 (log< (1- j) (- (n) 1))
                 (log= (q j) 0)
                 (if1 (log= (fnum) 1)
                      (log= (q j) -2)
                      (log= (q j) -1))))))

(in-theory (disable (q) (i) (rp) (rn) (qp) (qn) (expinc)))

(defthmd fsqrt64-loop-0-lemma
  (implies (and (not (zp j)) (<= j (n)))
           (equal (fsqrt64-loop-0 j (n) (fnum) (q j) (i j) (rp j) (rn j) (qp j) (qn j) (expinc j))
                  (list (q (n)) (i (n)) (rp (n)) (rn (n)) (qp (n)) (qn (n)) (expinc (n)))))
  :hints (("Goal" :in-theory (enable fsqrt64-loop-0 q i rp rn qp qn expinc))))

(defthmd fnum-vals
  (member (fnum) '(0 1 2))
  :hints (("Goal" :use (input-constraints-lemma)
                  :in-theory (enable input-constraints))))

(defthm q-n-rewrite
  (equal (q-n) (q (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n q-n q i rp rn qp qn expinc))))

(defthm qp-n-rewrite
  (equal (qp-n) (qp (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n qp-n q i rp rn qp qn expinc))))

(defthm qn-n-rewrite
  (equal (qn-n) (qn (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n qn-n q i rp rn qp qn expinc))))

(defthm rp-n-rewrite
  (equal (rp-n) (rp (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n rp-n q i rp rn qp qn expinc))))

(defthm rn-n-rewrite
  (equal (rn-n) (rn (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n rn-n q i rp rn qp qn expinc))))

(defthm expinc-n-rewrite
  (equal (expinc-n) (expinc (n)))
  :hints (("Goal" :use (fnum-vals (:instance fsqrt64-loop-0-lemma (j 1)))
                  :in-theory (enable n expinc-n q i rp rn qp qn expinc))))


;;*******************************************************************************

;;*******************************************************************************