File: algorithm.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (192 lines) | stat: -rw-r--r-- 5,289 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
;; Cuong Chau <cuong.chau@arm.com>

;; March 2021

(in-package "RTL")

(include-book "normalize")

(local (arith-5-for-rtl))

;; ======================================================================

;; Define the normalized dividend x and normalized divisor d satisfying
;; 1 <= x < 2 and 1 <= d < 2.

(defundd x () (sig (a)))

(defundd d () (sig (b)))

(defthm x-bounds
  (and (implies (not (specialp))
                (<= 1 (x)))
       (< (x) 2))
  :hints (("Goal" :in-theory (enable x)))
  :rule-classes :linear)

(defthm d-bounds
  (and (implies (not (specialp))
                (<= 1 (d)))
       (< (d) 2))
  :hints (("Goal" :in-theory (enable d)))
  :rule-classes :linear)

(defthm natp-2^prec-1*x
  (implies (not (specialp))
           (natp (* (expt 2 (1- (prec (f))))
                    (x))))
  :hints (("Goal"
           :use ((:instance exactp-sig
                            (x (bits (opa) 9 0))
                            (n 10))
                 (:instance exactp-sig
                            (x (bits (opa) 22 0))
                            (n 23))
                 (:instance exactp-sig
                            (x (bits (opa) 51 0))
                            (n 52)))
           :in-theory (e/d (specialp
                            a-class
                            f
                            x
                            a
                            opaz
                            opaw
                            fmtw
                            snanp
                            qnanp
                            nanp
                            infp
                            zerp
                            decode
                            sig-ndecode
                            normp
                            denormp
                            encodingp
                            pseudop
                            unsupp
                            exactp2
                            manf)
                           (exactp-sig))))
  :rule-classes :type-prescription)

(defthm natp-2^prec-1*d
  (implies (not (specialp))
           (natp (* (expt 2 (1- (prec (f))))
                    (d))))
  :hints (("Goal"
           :use ((:instance exactp-sig
                            (x (bits (opb) 9 0))
                            (n 10))
                 (:instance exactp-sig
                            (x (bits (opb) 22 0))
                            (n 23))
                 (:instance exactp-sig
                            (x (bits (opb) 51 0))
                            (n 52)))
           :in-theory (e/d (specialp
                            b-class
                            f
                            d
                            b
                            opbz
                            opbw
                            fmtw
                            snanp
                            qnanp
                            nanp
                            infp
                            zerp
                            decode
                            sig-ndecode
                            normp
                            denormp
                            encodingp
                            pseudop
                            unsupp
                            exactp2
                            manf)
                           (exactp-sig))))
  :rule-classes :type-prescription)

(defthmd x57-rewrite
  (implies (not (specialp))
           (equal (x57)
                  (* *2^55* (x))))
  :hints (("Goal"
           :use siga-rewrite
           :in-theory (enable x57 x cat bvecp))))

(defthm x57-bounds
  (and (implies (not (specialp))
                (<= *2^55* (x57)))
       (< (x57) *2^56*))
  :hints (("Goal"
           :use x57-rewrite
           :in-theory (enable x57 cat)))
  :rule-classes :linear)

(bvecthm bvecp56-x57
  (bvecp (x57) 56)
  :hints (("Goal" :in-theory (enable bvecp))))

(defthmd d57-rewrite
  (implies (not (specialp))
           (equal (d57) (* *2^55* (d))))
  :hints (("Goal"
           :use sigb-rewrite
           :in-theory (enable d57 d cat bvecp))))

(defthm d57-bounds
  (and (implies (not (specialp))
                (<= *2^55* (d57)))
       (< (d57) *2^56*))
  :hints (("Goal"
           :use d57-rewrite
           :in-theory (enable d57 cat)))
  :rule-classes :linear)

(bvecthm bvecp56-d57
  (bvecp (d57) 56)
  :hints (("Goal" :in-theory (enable bvecp))))

;; Partial quotients

(defundd quotient (i)
  (if (zp i)
      0
    (+ (quotient (1- i))
       (* (expt 2 (- 1 i)) (q i)))))

(local (in-theory (enable quotient)))

;; Partial remainders

(defundd rmd (i)
  (* (expt 2 (1- i))
     (- (x) (* (d) (quotient i)))))

(defthmd rmd0-rewrite
  (equal (rmd 0) (/ (x) 2))
  :hints (("Goal" :in-theory (enable rmd))))

(defthm rmd0-bound
  (implies (not (specialp))
           (< (abs (rmd 0)) (d)))
  :hints (("Goal" :in-theory (enable rmd0-rewrite)))
  :rule-classes :linear)

(defthmd rmd-recurrence
  (implies (posp j)
           (equal (rmd j)
                  (- (* 2 (rmd (1- j)))
                     (* (q j) (d)))))
  :hints (("Goal" :in-theory (enable rmd))))

(defthm q-bounds
  (and (<= -1 (q j))
       (<= (q j) 1))
  :hints (("Goal"
           :expand (q j)
           :in-theory (enable nextdigit)))
  :rule-classes :linear)