1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
#include <stdio.h>
#include <math.h>
#include <string>
#include "ac_fixed.h"
#include "ac_int.h"
#include "rac.h"
using namespace std;
#ifdef SLEC
#include "ac_probe.h"
#else
namespace ac {
template <typename T>
void probe_map(const char*prbnm, T inp) {}
}
#endif
// RAC begin
typedef ac_int<2, false> ui2;
typedef ac_int<3, false> ui3;
typedef ac_int<5, false> ui5;
typedef ac_int<6, false> ui6;
typedef ac_int<7, false> ui7;
typedef ac_int<8, false> ui8;
typedef ac_int<10, false> ui10;
typedef ac_int<11, false> ui11;
typedef ac_int<13, false> ui13;
typedef ac_int<23, false> ui23;
typedef ac_int<28, false> ui28;
typedef ac_int<30, false> ui30;
typedef ac_int<31, false> ui31;
typedef ac_int<42, false> ui42;
typedef ac_int<43, false> ui43;
typedef ac_int<44, false> ui44;
typedef ac_int<52, false> ui52;
typedef ac_int<53, false> ui53;
typedef ac_int<54, false> ui54;
typedef ac_int<55, false> ui55;
typedef ac_int<56, false> ui56;
typedef ac_int<57, false> ui57;
typedef ac_int<64, false> ui64;
typedef ac_int<3, true> si3;
typedef ac_int<4, true> si4;
typedef ac_int<13, true> si13;
typedef ac_int<57, true> si57;
//*********************************************
// fdiv2: Multi-Precision Radix-2 SRT Division
//*********************************************
// Formats:
enum Format {HP = 1, SP, DP};
// Data classes:
enum Class {ZERO, INF, SNAN, QNAN, NORM, DENORM};
// Rounding modes:
enum Rmode {RNE, RUP, RDN, RTZ};
// Flags:
enum Flags {IOC, DZC, OFC, UFC, IXC, IDC=7};
// Extract operand components, apply FZ, identify data class, and record denormal:
tuple<bool, ui11, ui52, Class, ui8> analyze(ui64 op, Format fmt, bool fz, ui8 flags) {
// Extract fields:
bool sign;
si13 exp;
ui52 man, manMSB;
bool expIsMax;
switch (fmt) {
case DP:
sign = op[63];
exp = op.slc<11>(52);
expIsMax = exp == 0x7FF;
man = op.slc<52>(0);
manMSB = 0x8000000000000;
break;
case SP:
sign = op[31];
exp = op.slc<8>(23);
expIsMax = exp == 0xFF;
man = op.slc<23>(0);
manMSB = 0x400000;
break;
case HP:
sign = op[15];
exp = op.slc<5>(10);
expIsMax = exp == 0x1F;
man = op.slc<10>(0);
manMSB = 0x200;
}
// Classify:
Class c;
if (expIsMax) { // NaN or infinity
if (man == 0) {
c = INF;
}
else if (man & manMSB) {
c = QNAN;
}
else {
c = SNAN;
}
}
else if (exp == 0) { // zero or denormal
if (man == 0) {
c = ZERO;
}
else if (fz) {
c = ZERO;
if (fmt != HP) {
flags[IDC] = 1; // denormal exception
}
}
else {
c = DENORM;
}
}
else { // normal
c = NORM;
}
return tuple<bool, ui11, ui52, Class, ui8>(sign, exp, man, c, flags);
}
// Count leading zeroes of a nonzero 53-bit vector.
// After k iterations of the loop, where 0 <= k <= 6, the value of n
// is 2^(6-k) and the low n entries of z and c are as follows:
// Consider the partition of x into n bit slices of width 2^k.
// For 0 <= i < n, the i^th slice is x[2^k*(i+1)-1:2^k*i].
// Let L(i) be the number of leading zeroes of this slice. Then
// z[i] = 1 <=> L(i) = 2^k;
// L(i) < 2^k => c[i] = L(i).
ui7 CLZ53(ui53 s) {
ui64 x = 0;
x.set_slc(11, s);
array<bool, 64> z;
array<ui6, 64> c;
for (uint i=0; i<64; i++) {
z[i] = !x[i];
c[i] = 0;
}
uint n = 64;
for (uint k=0; k<6; k++) {
n = n/2; // n = 2^(5-k)
for (uint i=0; i<n; i++) {
c[i] = z[2*i+1] ? c[2*i] : c[2*i+1];
c[i][k] = z[2*i+1];
z[i] = z[2*i+1] && z[2*i];
}
}
return c[0];
}
// NaN, infinity, or zero operand:
tuple<ui64, ui8> specialCase
(bool sign, ui64 opa, ui64 opb, Class classa, Class classb, ui2 fmt, bool dn, ui8 flags) {
bool isSpecial = false;
ui64 D = 0;
ui64 aNan, bNan, manMSB, infinity, defNaN, zero = 0;
switch (fmt) {
case DP:
aNan = opa.slc<64>(0);
bNan = opb.slc<64>(0);
zero[63] = sign;
infinity = 0x7FF0000000000000;
manMSB = 0x8000000000000;
break;
case SP:
aNan = opa.slc<32>(0);
bNan = opb.slc<32>(0);
zero[31] = sign;
infinity = 0x7F800000;
manMSB = 0x400000;
break;
case HP:
aNan = opa.slc<16>(0);
bNan = opb.slc<16>(0);
zero[15] = sign;
infinity = 0x7C00;
manMSB = 0x200;
break;
}
defNaN = infinity | manMSB;
if (classa == SNAN) {
D = dn ? defNaN : aNan | manMSB;
flags[IOC] = 1; // invalid operand
}
else if (classb == SNAN) {
D = dn ? defNaN : bNan | manMSB;
flags[IOC] = 1; // invalid operand
}
else if (classa == QNAN) {
D = dn ? defNaN : aNan;
}
else if (classb == QNAN) {
D = dn ? defNaN : bNan;
}
else if (classa == INF) {
if (classb == INF) {
D = defNaN;
flags[IOC] = 1; // invalid operand
}
else {
D = infinity | zero;
}
}
else if (classb == INF) {
D = zero;
}
else if (classa == ZERO) {
if (classb == ZERO) {
D = defNaN;
flags[IOC] = 1; // invalid operand
}
else {
D = zero;
}
}
else if (classb == ZERO) {
D = infinity | zero;
flags[DZC] = 1;
}
return tuple<ui64, ui8>(D, flags);
}
// Normalize denormal operands and compute exponent difference:
tuple<ui53, ui53, si13> normalize(ui11 expa, ui11 expb, ui52 mana, ui52 manb, ui2 fmt) {
ui53 siga = 0, sigb = 0;
uint bias;
switch (fmt) {
case DP:
siga = mana;
sigb = manb;
bias = 0x3FF;
break;
case SP:
siga.set_slc(29, ui23(mana));
sigb.set_slc(29, ui23(manb));
bias = 0x7F;
break;
case HP:
siga.set_slc(42, ui10(mana));
sigb.set_slc(42, ui10(manb));
bias = 0xF;
}
si13 expaShft, expbShft;
if (expa == 0) {
ui6 clz = CLZ53(siga);
siga <<= clz;
expaShft = 1 - clz;
}
else {
siga[52] = 1;
expaShft = expa;
}
if (expb == 0) {
ui6 clz = CLZ53(sigb);
sigb <<= clz;
expbShft = 1 - clz;
}
else {
sigb[52] = 1;
expbShft = expb;
}
si13 expQ = expaShft - expbShft + bias;
return tuple<ui53, ui53, si13>(siga, sigb, expQ);
}
// Derive quotient digit from remainder approximation:
int nextDigit (si3 RS3, si3 RC3) {
si4 R4 = RS3 + RC3;
if (R4 < -1) {
return -1;
}
else if (R4 == -1) {
return 0;
}
else {
return 1;
}
}
// Update remainder.
// The remainder is restricted to the upper w bits; lower 57-w bits are 0.
// scalar => w = 57
// SP vector => w = 27
// HP vector => w = 14
tuple<ui57, ui57> nextRem(ui57 sum0, ui57 car0, ui57 d57, int q, ui2 fmt) {
ui57 sumIn = sum0 << 1, carIn = car0 << 1, dIn = 0, sumOut = 0, carOut = 0;
if (q == 0) {
sumOut = sumIn ^ carIn;
carOut.set_slc(1, ui56(sumIn.slc<56>(0) & carIn.slc<56>(0)));
}
else {
if (q == 1) {
dIn = ~d57;
switch (fmt) {
case SP: dIn.set_slc(0, ui30(0)); break;
case HP: dIn.set_slc(0, ui43(0));
}
}
else {
dIn = d57;
}
sumOut = sumIn ^ carIn ^ dIn;
carOut.set_slc(1, ui56(sumIn.slc<56>(0) & carIn.slc<56>(0) | sumIn.slc<56>(0) & dIn.slc<56>(0) | carIn.slc<56>(0) & dIn.slc<56>(0)));
if (q == 1) {
switch (fmt) {
case DP: carOut[0] = 1; break;
case SP: carOut[30] = 1; break;
case HP: carOut[43] = 1;
}
}
}
if (sumOut[56] != carOut[56]) {
sumOut[56] = 0;
carOut[56] = 1;
}
else if (q == 1) {
sumOut[56] = 0;
carOut[56] = 0;
}
else if (q == -1) {
sumOut[56] = 1;
carOut[56] = 1;
}
return tuple<ui57, ui57>(sumOut, carOut);
}
// Update quotient and decremented quotient with next digit:
tuple<ui55, ui55> nextQuot(ui55 quot, ui55 quotM1, int q, uint i) {
ui55 nextQuot = q == -1 ? quotM1 : quot;
nextQuot[55-i] = q != 0;
ui55 nextQuotM1 = q == 1 ? quot : quotM1;
nextQuotM1[55-i] = q == 0;
return tuple<ui55, ui55> (nextQuot, nextQuotM1);
}
// Final result:
tuple<ui64, ui8> final(ui53 Qrnd, bool inx, bool sign, si13 expQ, ui2 rmode, bool fz, ui2 fmt, ui8 flags) {
// Selection of infinity or max normal for overflow case:
bool selMaxNorm = rmode == RDN && !sign || rmode == RUP && sign || rmode == RTZ;
ui64 D = 0; // data result
switch (fmt) {
case DP:
D[63] = sign;
if (expQ >= 0x7FF) { // overflow
if (selMaxNorm) {
D.set_slc(52, ui11(0x7FE));
D.set_slc(0, ui52(0xFFFFFFFFFFFFF));
}
else {
D.set_slc(52, ui11(0x7FF));
D.set_slc(0, ui52(0));
}
flags[OFC] = 1; // overflow
flags[IXC] = 1; // inexact
}
else if (expQ <= 0) { // subnormal
if (fz) {
flags[UFC] = 1; // underflow but not inexact
}
else {
ui11 exp = Qrnd[52];
D.set_slc(52, exp);
D.set_slc(0, Qrnd.slc<52>(0));
flags[IXC] = flags[IXC] || inx;
flags[UFC] = flags[UFC] || inx;
}
}
else { // normal
D.set_slc(52, ui11(expQ));
D.set_slc(0, Qrnd.slc<52>(0));
flags[IXC] = flags[IXC] || inx;
}
break;
case SP:
D[31] = sign;
if (expQ >= 0xFF) { // overflow
if (selMaxNorm) {
D.set_slc(23, ui8(0xFE));
D.set_slc(0, ui23(0x7FFFFF));
}
else {
D.set_slc(23, ui8(0xFF));
D.set_slc(0, ui23(0));
}
flags[OFC] = 1; // overflow
flags[IXC] = 1; // inexact
}
else if (expQ <= 0) { // subnormal
if (fz) {
flags[UFC] = 1; // underflow but not inexact
}
else {
ui8 exp = Qrnd[23];
D.set_slc(23, exp);
D.set_slc(0, Qrnd.slc<23>(0));
flags[IXC] = flags[IXC] || inx;
flags[UFC] = flags[UFC] || inx;
}
}
else { // normal
D.set_slc(23, ui8(expQ));
D.set_slc(0, Qrnd.slc<23>(0));
flags[IXC] = flags[IXC] || inx;
}
break;
case HP:
D[15] = sign;
if (expQ >= 0x1F) { // overflow
if (selMaxNorm) {
D.set_slc(10, ui5(0x1E));
D.set_slc(0, ui10(0x3FF));
}
else {
D.set_slc(10, ui5(0x1F));
D.set_slc(0, ui10(0));
}
flags[OFC] = 1; // overflow
flags[IXC] = 1; // inexact
}
else if (expQ <= 0) { // subnormal
if (fz) {
flags[UFC] = 1; // underflow but not inexact
}
else {
ui5 exp = Qrnd[10];
D.set_slc(10, exp);
D.set_slc(0, Qrnd.slc<10>(0));
flags[IXC] = flags[IXC] || inx;
flags[UFC] = flags[UFC] || inx;
}
}
else { // normal
D.set_slc(10, ui5(expQ));
D.set_slc(0, Qrnd.slc<10>(0));
flags[IXC] = flags[IXC] || inx;
}
break;
}
return tuple<ui64, ui8>(D, flags);
}
// The RTL uses a 55-bit vector for the partial quotient and a pair of 72-bit vectors for
// the partial remainder, which is represented in carry save form. For a scalar operation,
// the full quotient vector and the top 57 bits of each remainder vector are used, although
// these width are required only in the DP case. For a vector SP op, a 27-bit segment of
// each of the three vectors is allocated for each lane. For a vector HP op, each lane
// uses a 13-bit segment of the quotient vector and a 14-bit segment of each remainder vector.
// This model executes the lanes of a vector op sequentially. The function fdivLane executes
// a single lane, using a 55-bit vector for the quotient and 2 57-bit vectors for the remainder.
// For a vector op, only the appropriate number of top bits of each vector are used. This
// allows the eqyivalence checker to establish intermediate maps to reduce complexity.
// Note also that the data parameters are of width 64, but only the bottom 32 or 16 bits are
// used for a SP or HP op.
tuple<ui64, ui8> fdivLane(ui64 opa, ui64 opb, ui2 fmt, bool vec, bool fz, bool dn, ui2 rmode) {
// Analyze operands and process special cases:
bool signa, signb; // operand signs
ui11 expa, expb; // operand exponents
ui52 mana, manb; // operand mantissas
Class classa, classb; // operand classes
ui8 flags = 0; // exception flags
tie(signa, expa, mana, classa, flags) = analyze(opa, fmt, fz, flags);
tie(signb, expb, manb, classb, flags) = analyze(opb, fmt, fz, flags);
// sign of quotient:
bool sign = signa ^ signb;
// Detect early exit:
if (classa == ZERO || classa == INF || classa == SNAN || classa == QNAN ||
classb == ZERO || classb == INF || classb == SNAN || classb == QNAN) {
return specialCase(sign, opa, opb, classa, classb, fmt, dn, flags);
}
else {
// Normalize denormals and compute exponent difference:
ui53 x, d; // significands of dividend and divisor (1 implicit integer bit)
si13 expQ; // exponent difference
tie(x, d, expQ) = normalize(expa, expb, mana, manb, fmt);
ui57 x57 = 0, d57 = 0; // x and d represented as 57-bit vectors (2 implicit integer bits)
x57.set_slc(3, x);
d57.set_slc(3, d);
ui55 Qtrunc; // truncated quotient (1 implicit integer bit)
bool stk; // sticky bit
// Detect division by a power of 2:
if (manb == 0) {
Qtrunc = ui55(x) << 2;
stk = 0;
}
else {
// Partial remainder is represented in carry-save form, with 2 implicit integer bits
ui57 RS = 0, RC = 0;
ui2 fmtRem = vec ? fmt : DP; // fmt used in computation of remainder
// 1st SRT iteration is executed in the initial cycle.
// 1st digit is q = 1; 1st remainder is x - q * d = x - d. Thus,
// RS = x, RC = ~d, with 2's complement completed by setting lsb - 1 of each vector:
RS = x57;
RC = d57;
RC = ~RC;
switch (fmtRem) {
case DP: RC.set_slc(0, ui2(0)); RS[2] = 1; break;
case SP: RC.set_slc(0, ui31(0)); RS[31] = 1; break;
case HP: RC.set_slc(0, ui44(0)); RS[44] = 1;
}
// Partial quotient and decremented quotient, with 1 implicit integer bit:
ui55 quot = 0, quotM1 = 0;
// Initial partial quotient is 1:
quot[54] = 1;
// Quotient digit:
int q;
#ifdef SLEC
ac::probe_map("RS", RS);
ac::probe_map("RC", RC);
ac::probe_map("quot", quot);
ac::probe_map("quotM1", quotM1);
#endif
// Each of the subsequent iterative cycles executes 3 iterations. The total number
// of iterations (each of which extends the partial quotient by 1 bit) must exceed
// the precision of the op by at least 2, in order (1) to include a guard bit and
// (2) to allow for a possible leading zero, i.e., a quotient less than 1. This
// determines the number C of iterative cycles:
uint C;
switch (fmt) {
case DP: C = 18; break;
case SP: C = 9; break;
case HP: C = 4; break;
}
uint N = 3 * C + 1; // number of iterations
// Remaining N - 1 iterations:
for (uint i = 2; i<=N && i<=55; i++) { // absolute bound makes SLEC happy
q = nextDigit(RS.slc<3>(54), RC.slc<3>(54)); // compute digit
tie(RS, RC) = nextRem(RS, RC, d57, q, fmtRem); // update remainder:
tie(quot, quotM1) = nextQuot(quot, quotM1, q, i); // Update quotient:
#ifdef SLEC
ac::probe_map("RS", RS);
ac::probe_map("RC", RC);
ac::probe_map("quot", quot);
ac::probe_map("quotM1", quotM1);
#endif
}
// Select truncated quotient according to sign of remainder:
si57 RFinal = RS + RC;
bool RSign = RFinal < 0, RNonzero = RFinal != 0;
Qtrunc = RSign ? quotM1 : quot;
// Check for RFinal = -d:
ui57 RplusDS = RS ^ RC ^ d57;
ui57 RplusDC = (RS & RC | RS & d57 | RC & d57) << 1;
ui57 RplusDxor = RplusDS ^ RplusDC;
ui57 RplusDor = (RplusDS | RplusDC) << 1;
bool RplusDis0 = RplusDxor == RplusDor;
assert(RplusDis0 == (RFinal + d57 == 0));
// Sticky bit:
stk = RNonzero && !RplusDis0;
}
// Division by power of 2 merges with iterative case here.
// Right shift:
if (expQ <= 0) {
ui13 shft = 1 - expQ;
stk |= shft >= 55 || (Qtrunc & ((ui55(1) << shft) - 1)) != 0;
Qtrunc >>= shft;
}
// Normalize:
else if (!Qtrunc[54]) {
expQ--;
if (expQ > 0) {
Qtrunc <<= 1;
}
}
// Move to low-order bits:
switch (fmt) {
case SP:
stk |= Qtrunc.slc<29>(0) != 0;
Qtrunc >>= 29;
break;
case HP:
stk |= Qtrunc.slc<42>(0) != 0;
Qtrunc >>= 42;
}
// Round:
bool lsb = Qtrunc[2], grd = Qtrunc[1];
stk |= Qtrunc[0];
bool inx = grd || stk; // Inexact result:
ui53 Qrnd;
if ((rmode == RNE) && grd && (lsb || stk) ||
(rmode == RUP) && !sign && (grd || stk) ||
(rmode == RDN) && sign && (grd || stk)) {
// Subnormal quotient can round up to a power of 2, but a normal quotient cannot;
// thus, the msb is always retained here:
Qrnd = Qtrunc.slc<53>(2) + 1;
}
else {
Qrnd = Qtrunc.slc<53>(2);
}
// Compute exceptions and assemble final result:
return final(Qrnd, inx, sign, expQ, rmode, fz, fmt, flags);
}
}
// The top-level function simply calls fdivLane (once for a scalar operation, twice for
// SP vector, 4 times for HP vector) and combines the results:
tuple<ui64, ui8> fdiv2(ui64 opa, ui64 opb, ui2 fmt, bool vec, bool fz, bool dn, ui2 rmode) {
ui64 D = 0, DLane;
ui8 flags = 0, flagsLane;
uint numLanes = fmt == DP || !vec ? 1 : fmt == SP ? 2 : 4;
uint width = fmt == SP ? 32 : 16;
for (uint k=0; k<numLanes && k<4; k++) {
tie(DLane, flagsLane) = fdivLane(opa, opb, fmt, vec, fz, dn, rmode);
D |= DLane << (k * width);
flags |= flagsLane;
opa >>= width;
opb >>= width;
}
return tuple<ui64, ui8>(D, flags);
}
// RAC end
#ifdef SLEC
SC_MODULE(my_wrapper) {
sc_in_clk clk;
sc_in<bool> reset;
sc_in<bool> vec;
sc_in<bool> fz;
sc_in<bool> dn;
sc_in<ui2> rmode;
sc_in<ui2> fmt;
sc_in<ui64> opa;
sc_in<ui64> opb;
sc_out<ui64> D;
sc_out<ui8> flags;
void doit() {
if (reset.read()) {
return;
}
fz.read();
dn.read();
rmode.read();
vec.read();
fmt.read();
opa.read();
opb.read();
ui64 data;
ui8 excps;
tie(data, excps) = fdiv2(opa, opb, fmt, vec, fz, dn, rmode);
D.write(data);
flags.write(excps);
}
SC_CTOR(my_wrapper) {
SC_METHOD(doit);
sensitive_pos << clk;
}
};
#else
int main() {
/*
ui64 opa = 0x0000000008000018;
ui64 opb = 0x000ffbffffffffaf;
ui2 rmode = 3;
bool dn = 0, fz = 1;
ui2 fmt = DP;
bool vec = 0;
*/
ui64 opa = 0xf3f6;
ui64 opb = 0xa9c3;
ui2 rmode = 3;
bool dn = 1, fz = 0;
ui2 fmt = HP;
bool vec = 0;
ui64 D;
ui8 flags;
tie(D, flags) = fdiv2(opa, opb, fmt, vec, fz, dn, rmode);
printf("opa = %s\n", opa.to_string(AC_HEX, false).c_str());
printf("opb = %s\n", opb.to_string(AC_HEX, false).c_str());
printf("D = %s\n", D.to_string(AC_HEX, false).c_str());
printf("flags = %s\n", flags.to_string(AC_HEX, false).c_str());
return 0;
}
#endif
|