1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
;; Cuong Chau <cuong.chau@arm.com>
;; June 2021
(in-package "RTL")
(include-book "fdiv2")
(include-book "projects/arm/utils/rtl-utils" :dir :system)
(include-book "projects/rac/lisp/internal-fns-gen" :dir :system)
;; ======================================================================
;; We impose the following constraints on the inputs of fdivlane:
(defund input-constraints (opa opb fnum vec rin)
(and (bvecp opa 64)
(bvecp opb 64)
(member fnum '(1 2 3))
(bitp vec)
(natp rin)))
;; Our ultimate objective is the following theorem:
;; (defthm fdivlane-correct
;; (implies (input-constraints opa opb fnum vec rin)
;; (let* ((f (case fnum (1 (hp)) (2 (sp)) (3 (dp))))
;; (fmtw (+ 1 (expw f) (sigw f)))
;; (fzp (bitn rin 24))
;; (dnp (bitn rin 25))
;; (rmode (bits rin 23 22)))
;; (mv-let (data flags) (fdivlane opa opb fnum vec fzp dnp rmode)
;; (mv-let
;; (data-spec r-spec)
;; (arm-binary-spec 'div
;; (bits opa (1- fmtw) 0)
;; (bits opb (1- fmtw) 0)
;; rin
;; f)
;; (and (equal data data-spec)
;; (equal (logior rin flags) r-spec)))))))
;; In order to address the lack of modularity of the ACL2 code, we take the
;; following approach.
;; First, we introduce constrained constants representing the inputs:
(encapsulate
(((opa) => *)
((opb) => *)
((fnum) => *)
((vec) => *)
((rin) => *))
(local (defun opa () 0))
(local (defun opb () 0))
(local (defun fnum () 1))
(local (defun vec () 0))
(local (defun rin () 0))
(defthm input-constraints-lemma
(input-constraints (opa) (opb) (fnum) (vec) (rin))))
(local (in-theory (disable input-constraints-lemma)))
(bvecthm bvecp64-opa
(bvecp (opa) 64)
:hints (("Goal"
:use input-constraints-lemma
:in-theory (enable input-constraints))))
(bvecthm bvecp64-opb
(bvecp (opb) 64)
:hints (("Goal"
:use input-constraints-lemma
:in-theory (enable input-constraints))))
(defthm fnum-vals
(and (posp (fnum))
(<= (fnum) 3))
:hints (("Goal"
:use input-constraints-lemma
:in-theory (enable input-constraints)))
:rule-classes ((:type-prescription :corollary (natp (fnum)))
(:linear :corollary (and (<= 1 (fnum))
(<= (fnum) 3)))))
(bitthm bitp-vec
(bitp (vec))
:hints (("Goal"
:use input-constraints-lemma
:in-theory (enable input-constraints))))
(defthm natp-rin
(natp (rin))
:hints (("Goal"
:use input-constraints-lemma
:in-theory (enable input-constraints)))
:rule-classes :type-prescription)
(defundd f ()
(case (fnum)
(1 (hp))
(2 (sp))
(3 (dp))))
(defthm formatp-f
(formatp (f))
:hints (("Goal" :in-theory (enable f))))
(defthm expw-f-domain
(and (natp (expw (f)))
(<= 5 (expw (f)))
(<= (expw (f)) 11))
:hints (("Goal" :in-theory (enable f)))
:rule-classes ((:type-prescription :corollary (natp (expw (f))))
(:linear :corollary (and (<= 5 (expw (f)))
(<= (expw (f)) 11)))))
(defthm sigw-f-domain
(and (natp (sigw (f)))
(<= 10 (sigw (f)))
(<= (sigw (f)) 52))
:hints (("Goal" :in-theory (enable f)))
:rule-classes ((:type-prescription :corollary (natp (sigw (f))))
(:linear :corollary (and (<= 10 (sigw (f)))
(<= (sigw (f)) 52)))))
(defthm prec-f-domain
(and (natp (prec (f)))
(<= 11 (prec (f)))
(<= (prec (f)) 53))
:hints (("Goal" :in-theory (enable f)))
:rule-classes ((:type-prescription :corollary (natp (prec (f))))
(:linear :corollary (and (<= 11 (prec (f)))
(<= (prec (f)) 53)))))
(defundd fzp () (bitn (rin) 24))
(bitthm bitp-fzp
(bitp (fzp))
:hints (("Goal" :in-theory (enable fzp))))
(defundd dnp () (bitn (rin) 25))
(bitthm bitp-dnp
(bitp (dnp))
:hints (("Goal" :in-theory (enable dnp))))
(defundd rmode () (bits (rin) 23 22))
(bvecthm bvecp2-rmode
(bvecp (rmode) 2)
:hints (("Goal" :in-theory (enable rmode))))
;; In terms of these constants, we shall define constants corresponding to the
;; local variables of fdivlane, culminating in the constant (result)
;; corresponding to the outputs.
;; The constant definitions will be derived from that of fdivlane in such a way
;; that the proof of the following will be trivial:
;; (defthm fdivlane-lemma
;; (equal (result)
;; (fdivlane (opa) (opb) (fnum) (vec) (fzp) (dnp) (rmode))))
;; (defundd data ()
;; (mv-nth 0 (mv-list 2 (result))))
;; (defundd flags ()
;; (mv-nth 1 (mv-list 2 (result))))
;; The real work will be the proof of the following theorem:
;; (defthm fdivlane-main
;; (let ((fmtw (+ 1 (expw (f)) (sigw (f)))))
;; (mv-let
;; (data-spec r-spec)
;; (arm-binary-spec 'div
;; (bits (opa) (1- fmtw) 0)
;; (bits (opb) (1- fmtw) 0)
;; (rin)
;; (f))
;; (and (equal (data) data-spec)
;; (equal (logior (rin) (flags)) r-spec)))))
;; The following is an immediate consequence of the four preceding events:
;; (defthm fdivlane-main-inst
;; (let* ((f (case fnum (1 (hp)) (2 (sp)) (3 (dp))))
;; (fmtw (+ 1 (expw f) (sigw f)))
;; (fzp (bitn (rin) 24))
;; (dnp (bitn (rin) 25))
;; (rmode (bits (rin) 23 22)))
;; (mv-let (data flags) (fdivlane (opa) (opb) (fnum) (vec) fzp dnp rmode)
;; (mv-let
;; (data-spec r-spec)
;; (arm-binary-spec 'div
;; (bits (opa) (1- fmtw) 0)
;; (bits (opb) (1- fmtw) 0)
;; (rin)
;; f)
;; (and (equal data data-spec)
;; (equal (logior (rin) flags) r-spec))))))
;; The desired theorem can then be derived by functional instantiation.
;; ======================================================================
;; In this book, we'll define the constants and prove the above fdivlane-lemma
;; using the CONST-FNS-GEN utility.
;; For some reason, it takes a lot of time to prove fdivlane-lemma when
;; applying CONST-FNS-GEN to function fdivlane. To overcome this, we split the
;; definition of fdivlane into two functions and apply CONST-FNS-GEN to each of
;; them.
(encapsulate
()
(set-ignore-ok t)
(set-irrelevant-formals-ok t)
(defund fdivlane-segment (opa opb fmt vec fz)
(let ((signa 0)
(signb 0)
(expa 0)
(expb 0)
(mana 0)
(manb 0)
(classa 0)
(classb 0)
(flags (bits 0 7 0)))
(mv-let
(signa expa mana classa flags)
(analyze opa fmt fz flags)
(mv-let
(signb expb manb classb flags)
(analyze opb fmt fz flags)
(let ((sign (logxor signa signb)))
(let ((x 0) (d 0) (expq 0))
(mv-let
(x d expq)
(normalize expa expb mana manb fmt)
(let* ((x57 (bits 0 56 0))
(d57 (bits 0 56 0))
(x57 (setbits x57 57 55 3 x))
(d57 (setbits d57 57 55 3 d))
(qtrunc 0)
(stk 0))
(mv-let
(qtrunc stk)
(if1
(log= manb 0)
(mv (bits (ash x 2) 54 0) 0)
(let* ((rs (bits 0 56 0))
(rc (bits 0 56 0))
(fmtrem (bits (if1 vec fmt 3) 1 0))
(quot (bits 0 54 0))
(quotm1 (bits 0 54 0))
(q 0)
(c 0)
(c (case fmt (3 18) (2 9) (1 4) (t c)))
(n (+ (* 3 c) 1))
(rs x57)
(rc d57)
(rc (bits (lognot rc) 56 0)))
(mv-let
(rc rs)
(case fmtrem
(3 (mv (setbits rc 57 1 0 0)
(setbitn rs 57 2 1)))
(2 (mv (setbits rc 57 30 0 0)
(setbitn rs 57 31 1)))
(1 (mv (setbits rc 57 43 0 0)
(setbitn rs 57 44 1)))
(t (mv rc rs)))
(let ((quot (setbitn quot 55 54 1)))
(mv-let
(q rs rc quot quotm1)
(fdivlane-loop-0
2 n d57 fmtrem q rs rc quot quotm1)
(let* ((rfinal (bits (+ rs rc) 56 0))
(rsign (log< (si rfinal 57) 0))
(rnonzero (log<> (si rfinal 57) 0))
(qtrunc (bits (if1 rsign quotm1 quot) 54 0))
(rplusds (logxor (logxor rs rc) d57))
(rplusdc
(bits
(ash
(logior
(logior (logand rs rc) (logand rs d57))
(logand rc d57))
1)
56 0))
(rplusdxor (logxor rplusds rplusdc))
(rplusdor
(bits (ash (logior rplusds rplusdc) 1)
56 0))
(rplusdis0 (log= rplusdxor rplusdor))
(assert
(in-function
fdivlane
(log= rplusdis0
(log= (+ (si rfinal 57) d57) 0)))))
(mv
qtrunc
(logand1 rnonzero (lognot1 rplusdis0)))))))))
(mv-let
(expq stk qtrunc)
(if1
(log<= (si expq 13) 0)
(let ((shft (bits (- 1 (si expq 13)) 12 0)))
(mv
expq
(logior
stk
(logior1
(log>= shft 55)
(log<> (logand qtrunc (- (ash 1 shft) 1))
0)))
(bits (ash qtrunc (- shft)) 54 0)))
(mv-let
(expq qtrunc)
(if1 (lognot1 (bitn qtrunc 54))
(let ((expq1 (bits (- (si expq 13) 1) 12 0)))
(mv expq1
(if1 (log> (si expq1 13) 0)
(bits (ash qtrunc 1) 54 0)
qtrunc)))
(mv expq qtrunc))
(mv expq stk qtrunc)))
(mv expq stk qtrunc flags)))))))))))
(defund fdivlane-alt (opa opb fmt vec fz dn rmode)
(let ((signa 0)
(signb 0)
(expa 0)
(expb 0)
(mana 0)
(manb 0)
(classa 0)
(classb 0)
(flags (bits 0 7 0)))
(mv-let
(signa expa mana classa flags)
(analyze opa fmt fz flags)
(mv-let
(signb expb manb classb flags)
(analyze opb fmt fz flags)
(let ((sign (logxor signa signb)))
(if1
(logior1
(logior1
(logior1
(logior1 (logior1 (logior1 (logior1 (log= classa 0)
(log= classa 1))
(log= classa 2))
(log= classa 3))
(log= classb 0))
(log= classb 1))
(log= classb 2))
(log= classb 3))
(specialcase sign opa opb classa classb fmt dn flags)
(mv-let
(expq stk qtrunc flags)
(fdivlane-segment opa opb fmt vec fz)
(mv-let
(stk qtrunc)
(case fmt
(2 (mv (logior stk (log<> (bits qtrunc 28 0) 0))
(bits (ash qtrunc (- 29)) 54 0)))
(1 (mv (logior stk (log<> (bits qtrunc 41 0) 0))
(bits (ash qtrunc (- 42)) 54 0)))
(t (mv stk qtrunc)))
(let* ((lsb (bitn qtrunc 2))
(grd (bitn qtrunc 1))
(stk (logior stk (bitn qtrunc 0)))
(inx (logior1 grd stk))
(qrnd 0)
(qrnd
(if1
(logior1
(logior1
(logand1 (logand1 (log= rmode 0) grd)
(logior1 lsb stk))
(logand1
(logand1 (log= rmode 1) (lognot1 sign))
(logior1 grd stk)))
(logand1 (logand1 (log= rmode 2) sign)
(logior1 grd stk)))
(bits (+ (bits qtrunc 54 2) 1) 52 0)
(bits qtrunc 54 2))))
(final qrnd inx sign
expq rmode fz fmt flags))))))))))
(defthm fdivlane-alt-=-fdivlane
(equal (fdivlane-alt opa opb fmt vec fz dn rmode)
(fdivlane opa opb fmt vec fz dn rmode))
:hints (("Goal" :in-theory '(fdivlane-alt fdivlane fdivlane-segment))))
)
(make-event
`,(const-fns-gen 'fdivlane-segment 'fdivlane-segment-result state
:sub-pairs '((fmt fnum)
(fz fzp)
(flags-1 flags-a)
(flags flags-b-segment)
(x siga)
(d sigb)
(rs-2 rs-0)
(rc-3 rc-0)
(expq expq-segment)
(stk stk-segment)
(qtrunc qtrunc-segment)
(rs rsf)
(rc rcf)
(quot quotf)
(quotm1 quotm1f)
(shft--0 shft))
:excluded-vars '(expq1--0
rc-2
qtrunc-1
stk-1
expq++1
qtrunc++1)))
(local
(defthm fdivlane-alt-lemma-aux
(equal (mv-nth 3 (fdivlane-segment (opa)
(opb)
(fnum)
(vec)
(fzp)))
(mv-nth 4 (analyze (opb)
(fnum)
(fzp)
(mv-nth 4
(analyze (opa)
(fnum)
(fzp)
(bits 0 7 0))))))
:hints (("Goal" :in-theory '(fdivlane-segment)))))
(make-event
`,(const-fns-gen 'fdivlane-alt 'result state
:sub-pairs '((fmt fnum)
(fz fzp)
(dn dnp)
(flags flags-b))
:excluded-vars '(flags-1 stk-1)
:rules '(fdivlane-alt-lemma-aux)))
(defthmd fdivlane-lemma
(equal (result)
(fdivlane (opa) (opb) (fnum) (vec) (fzp) (dnp) (rmode)))
:hints (("Goal" :in-theory (enable fdivlane-alt-lemma))))
(defthmd fdivlane-segment-result-expand
(and (equal (expq) (expq-segment))
(equal (stk-0) (stk-segment))
(equal (qtrunc-0) (qtrunc-segment))
(equal (flags-b) (flags-b-segment)))
:hints (("Goal"
:use fdivlane-segment-lemma
:in-theory '(expq stk-0 qtrunc-0 flags-b
fdivlane-segment-result))))
(defundd data ()
(mv-nth 0 (mv-list 2 (result))))
(defundd flags ()
(mv-nth 1 (mv-list 2 (result))))
(make-event
`,(const-fns-gen 'normalize 'normalize-result state
:sub-pairs '((fmt fnum)
(siga nsiga)
(sigb nsigb)
(bias bs))
:excluded-vars '(clz--0-0 clz--0)))
(defthm n-bounds
(and (<= 13 (n))
(<= (n) 55))
:hints (("Goal" :in-theory (enable n c)))
:rule-classes :linear)
;; We define the sequences of values (q j), (rs57 j), (rc57 j), (quot j), and
;; (quotm1 j) as a set of mutually recursive functions, as they are computed by
;; fdivlane-loop-1. These functions are mechanically generated by applying the
;; LOOP-FNS-GEN utility. We also prove that the constants (rsf), etc., are
;; related to these functions as follows:
;; (equal (rsf) (rs57 (n)))
;; (equal (rcf) (rc57 (n)))
;; (equal (quotf) (quot (n)))
;; (equal (quotm1f) (quotm1 (n)))
(make-event
`(progn
,@(loop-fns-gen 'fdivlane-loop-0 state
:base-cond '(or (zp i) (= i 1))
:init-alist '((q 1)
(rs57 (rs-0))
(rc57 (rc-0))
(quot *2^54*)
(quotm1 0))
:sub-pairs '(((i) . i)
(rs rs57)
(rc rc57)))))
(local
(defthmd fdivlane-loop-0-lemma-1
(implies (and (natp i)
(<= 2 i)
(<= i (1+ (n))))
(equal (fdivlane-loop-0 i (n)
(d57)
(fmtrem)
(q (1- i))
(rs57 (1- i))
(rc57 (1- i))
(quot (1- i))
(quotm1 (1- i)))
(list (q (n))
(rs57 (n))
(rc57 (n))
(quot (n))
(quotm1 (n)))))
:hints (("Goal" :in-theory (enable fdivlane-loop-0
fdivlane-loop-0-all-fns)))))
(local
(defthm fdivlane-loop-0-lemma-2
(equal (fdivlane-loop-0 2 (n)
(d57)
(fmtrem)
0
(rs-0)
(rc-0)
*2^54*
0)
(fdivlane-loop-0 2 (n)
(d57)
(fmtrem)
1
(rs-0)
(rc-0)
*2^54*
0))
:hints (("Goal" :expand ((:free (n) (fdivlane-loop-0 2 n
(d57)
(fmtrem)
0
(rs-0)
(rc-0)
*2^54*
0))
(:free (n) (fdivlane-loop-0 2 n
(d57)
(fmtrem)
1
(rs-0)
(rc-0)
*2^54*
0)))))))
(local
(defthm fdivlane-loop-0-lemma-3
(equal (fdivlane-loop-0 2 (n)
(d57)
(fmtrem)
0
(rs-0)
(rc-0)
*2^54*
0)
(list (q (n))
(rs57 (n))
(rc57 (n))
(quot (n))
(quotm1 (n))))
:hints (("Goal"
:in-theory (enable fdivlane-loop-0-all-fns)
:use (:instance fdivlane-loop-0-lemma-1 (i 2))))))
(defthmd rsf-rewrite
(equal (rsf) (rs57 (n)))
:hints (("Goal" :in-theory (enable rsf))))
(defthmd rcf-rewrite
(equal (rcf) (rc57 (n)))
:hints (("Goal" :in-theory (enable rcf))))
(defthmd quotf-rewrite
(equal (quotf) (quot (n)))
:hints (("Goal" :in-theory (enable quotf))))
(defthmd quotm1f-rewrite
(equal (quotm1f) (quotm1 (n)))
:hints (("Goal" :in-theory (enable quotm1f))))
|