1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
;; Mayank Manjrekar <mankmonjre@gmail.com>
;; June 2023
(in-package "RTL")
(include-book "rtl/rel11/lib/top-alt" :dir :system)
(local (include-book "arithmetic-5/top" :dir :system))
(local
(in-theory
#!acl2(disable |(mod (+ x y) z) where (<= 0 z)|
|(mod (+ x (- (mod a b))) y)|
|(mod (mod x y) z)|
|(mod (+ x (mod a b)) y)|
mod-cancel-*-const
cancel-mod-+
reduce-additive-constant-<
ash-to-floor
|(floor x 2)|
|(equal x (if a b c))|
|(equal (if a b c) x)|
|(logior 1 x)|
mod-theorem-one-b
|(mod (- x) y)|)))
(defevaluator bits-evl bits-evl-lst
((bits x i j)
(binary-+ x y)
(if x y z)
(integerp x)
(not x)
(< x y)
(unary-- x)
(unary-/ x)
(binary-* x y)
(bvecp x k)
(expt x y)
(mod x y)
(floor x y)
(fl x)))
(set-state-ok t)
(set-irrelevant-formals-ok t)
(defun find-bits-tail-in-sum-fn1 (sum i mfc state)
(declare (xargs :guard (pseudo-termp sum)))
;; Find an addend of the form (bits x k 0) in a summation "sum", such that
;; k>=i. If the there is such a addend, the return value is a multiple value
;; containing the same same summation with x in place of (bits x k 0), x, k,
;; and the sign with which (bits x k 0) appears in the summation (nil for +ve
;; and t for -ve).
(cond ((and (consp sum)
(eql (car sum) 'binary-+))
(b* ((laddend (cadr sum))
(raddend (caddr sum))
((mv lterm x k sgn) (find-bits-tail-in-sum-fn1 laddend i mfc state))
((when x) (mv (list 'binary-+ lterm raddend) x k sgn))
((mv rterm x k sgn) (find-bits-tail-in-sum-fn1 raddend i mfc state))
((when x) (mv (list 'binary-+ laddend rterm) x k sgn)))
(mv sum nil nil nil)))
((and (consp sum)
(eql (car sum) 'unary--))
(mv-let (sum x k sgn)
(find-bits-tail-in-sum-fn1 (cadr sum) i mfc state)
(mv `(unary-- ,sum) x k (not sgn))))
((and (consp sum)
(eql (car sum) 'bits))
(b* ((x (cadr sum))
(k (caddr sum))
(j (cadddr sum)))
(if (and (quotep j)
(eql (unquote j) '0)
(equal (mfc-rw `(if (integerp ,k) (if (integerp ,x) (not (< ,k ,i)) 'nil) 'nil) t t mfc state) acl2::*t*))
(mv x x k nil)
(mv sum nil nil nil))))
(t (mv sum nil nil nil))))
(defun bits-bits-sum-meta-fn (term mfc state)
(declare (xargs :guard (pseudo-termp term)))
;; Check if term is of the form (bits *summation* i j), and if so, simplify
;; the addends of the form (bits x k 0), k>=i.
(if (and (consp term)
(consp (cdr term))
(eql (car term) 'bits)
(consp (cddr term))
(consp (cdddr term))
(not (cddddr term)))
(b* ((sum (cadr term))
(i (caddr term))
(j (cadddr term))
((unless (equal (mfc-rw `(if (integerp ,i)
(if (integerp ,j)
(not (< ,j '0))
'nil)
'nil) t t mfc state) acl2::*t*))
term)
((mv new-sum x k ?sgn) (find-bits-tail-in-sum-fn1 sum i mfc state)))
(if x
`(if (if (integerp ,new-sum)
(if (integerp ,i)
(if (integerp ,j)
(if (not (< ,j '0))
(if (integerp ,k)
(if (integerp ,x)
(not (< ,k ,i))
'nil)
'nil)
'nil)
'nil)
'nil)
'nil)
(bits ,new-sum ,i ,j)
,term)
term))
term))
(local-defthmd bits-bits-sum-bf-aux-1
(b* (((mv term x k sgn) (find-bits-tail-in-sum-fn1 sum i mfc state)))
(implies (acl2-numberp (bits-evl x a))
(equal (bits-evl term a)
(if sgn
(+ (bits-evl sum a)
(- (bits (bits-evl x a) (bits-evl k a) 0) (bits-evl x a)))
(+ (bits-evl sum a)
(- (bits-evl x a) (bits (bits-evl x a) (bits-evl k a) 0)))))))
:hints (("Goal" :in-theory (e/d () ()))))
(local-defthmd mod-minus
(implies (and (integerp x)
(rationalp l))
(equal (mod (- x) l)
(if (equal (mod x l) 0)
0
(- l (mod x l)))))
:hints (("Goal" :in-theory (e/d () ())
:use ((:instance mod-def
(x (- x)) (y l))
(:instance mod-def
(x x) (y l))
(:instance minus-fl
(x (/ x l)))))))
(local-defthmd bits-bits-sum-lemma-1
(implies (and (integerp x)
(integerp y)
(integerp k)
(integerp i)
(integerp j)
(>= j 0)
(>= k i))
(equal (bits (+ y (- x (bits x k 0))) i j)
(bits y i j)))
:hints (("Goal" :in-theory (e/d (bits mod)
((:DEFINITION NOT)
(:REWRITE ACL2::|(* (if a b c) x)|)
(:REWRITE ACL2::|(+ x (if a b c))|)
(:REWRITE ACL2::|(- (if a b c))|)
(:REWRITE ACL2::|(floor (+ x y) z) where (< 0 z)| . 1)
(:REWRITE ACL2::|(floor (- x) y)| . 1))))))
(local-defthmd bits-bits-sum-lemma-2
(implies (and (integerp x)
(integerp y)
(integerp k)
(integerp i)
(integerp j)
(>= j 0)
(>= k i))
(equal (bits (+ y (- (bits x k 0) x)) i j)
(bits y i j)))
:hints (("Goal" :in-theory (e/d (bits mod)
((:DEFINITION NOT)
(:REWRITE ACL2::|(* (if a b c) x)|)
(:REWRITE ACL2::|(+ x (if a b c))|)
(:REWRITE ACL2::|(- (if a b c))|)
(:REWRITE ACL2::|(floor (+ x y) z) where (< 0 z)| . 1)
(:REWRITE ACL2::|(floor (- x) y)| . 1))))))
(local-defthm not-numberp-bits
(implies (not (acl2-numberp x))
(and (equal (bits x i j) 0)
(equal (bits (- x) i j) 0)))
:hints (("Goal" :in-theory (e/d (bits) ()))))
(local-defthm acl2-numberp-new-term
(implies (acl2-numberp (bits-evl (mv-nth 1 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(equal (acl2-numberp (bits-evl (mv-nth 0 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(acl2-numberp (bits-evl sum a))))
:hints (("Goal" :in-theory (e/d () ()))))
(local-defthm aux
(implies (not x)
(equal (bits-evl x a) nil))
:hints (("Goal" :in-theory (e/d () ()))))
(local-defthm aux-1
(implies (acl2-numberp x)
(equal (integerp (- x))
(integerp x)))
:hints (("Goal" :in-theory (e/d () ())))
:rule-classes nil)
(local-defthm aux-2
(implies (acl2-numberp (- x y))
(equal (integerp (- x y))
(integerp (- y x))))
:hints (("Goal" :use ((:instance aux-1
(x (- x y))))))
:rule-classes nil)
(local-defthmd integerp-new-term
(implies (integerp (bits-evl (mv-nth 1 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(integerp (- (bits-evl sum a) (bits-evl (mv-nth 0 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))))
:hints (("Goal" :in-theory (e/d () ()))
("Subgoal *1/24" :use (:instance aux-2
(x (BITS-EVL (MV-NTH 0
(FIND-BITS-TAIL-IN-SUM-FN1 (CADR SUM)
I MFC STATE))
A))
(y (BITS-EVL (CADR SUM) A))))))
(local-defthmd integerp-new-term-alt
(implies (integerp (bits-evl (mv-nth 1 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(equal (integerp (bits-evl (mv-nth 0 (find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(integerp (bits-evl sum a))))
:hints (("Goal" :in-theory (e/d () (find-bits-tail-in-sum-fn1
acl2-numberp-new-term))
:use (integerp-new-term
acl2-numberp-new-term))))
(local-defthmd bits-bits-sum-bf-aux
(b* (((mv new-term x k ?sgn) (find-bits-tail-in-sum-fn1 sum i mfc state)))
(implies (and x
(integerp (bits-evl x a))
(integerp (bits-evl new-term a))
(integerp (bits-evl i a))
(integerp (bits-evl j a))
(integerp (bits-evl k a))
(<= 0 (bits-evl j a))
(<= (bits-evl i a)
(bits-evl k a)))
(equal (bits (bits-evl new-term a)
(bits-evl i a)
(bits-evl j a))
(bits (bits-evl sum a)
(bits-evl i a)
(bits-evl j a)))))
:hints (("Goal" :in-theory (e/d (integerp-new-term-alt)
(find-bits-tail-in-sum-fn1
(:REWRITE ACL2::DEFAULT-PLUS-1)
(:REWRITE ACL2::DEFAULT-PLUS-2)
(:REWRITE ACL2::DEFAULT-MINUS)))
:use (bits-bits-sum-bf-aux-1
(:instance bits-bits-sum-lemma-1
(y (bits-evl sum a))
(x (bits-evl (mv-nth 1
(find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(k (bits-evl (mv-nth 2
(find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(i (bits-evl i a))
(j (bits-evl j a)))
(:instance bits-bits-sum-lemma-2
(y (bits-evl sum a))
(x (bits-evl (mv-nth 1
(find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(k (bits-evl (mv-nth 2
(find-bits-tail-in-sum-fn1 sum i mfc state)) a))
(i (bits-evl i a))
(j (bits-evl j a)))))))
;; Meta rule to automatically handle simplifications performed by
;; bits-bits-sum, bits-bits-sum-alt, and bits-bits-diff
(defthmd bits-bits-sum-meta
(implies (and (pseudo-termp x)
(alistp a))
(equal (bits-evl x a)
(bits-evl (bits-bits-sum-meta-fn x mfc state) a)))
:hints (("Goal" :in-theory (e/d (bits-bits-sum-bf-aux) ())
:do-not-induct t))
:rule-classes ((:meta :trigger-fns (bits))))
#|
;; For example:
(thm
(implies (and (integerp x)
(integerp y)
(integerp z)
(integerp n)
(natp i)
(>= n i))
(equal (bits (+ z (- (bits x 3 0) (bits y n 0))) i 0)
(bits (+ z (bits x 3 0) (- y)) i 0)))
:hints (("Goal" :in-theory (e/d (bits-bits-sum-meta) ()))))
|#
;;======================================================================
(defun find-power-of-2-gt-n (prod n mfc state)
(declare (xargs :guard (and (pseudo-termp prod)
(pseudo-termp n))))
(cond ((and (consp prod)
(eql (car prod) 'binary-*))
(b* ((left (cadr prod))
(right (caddr prod))
((mv kl yl) (find-power-of-2-gt-n left n mfc state))
((when kl) (mv kl `(binary-* ,yl ,right)))
((mv kr yr) (find-power-of-2-gt-n right n mfc state))
((when kr) (mv kr `(binary-* ,left ,yr))))
(mv nil prod)))
((and (consp prod)
(eql (car prod) 'expt)
(equal (cadr prod) ''2)
(equal (mfc-rw `(< ,n ,(caddr prod)) t t mfc state) acl2::*t*))
(mv (caddr prod) ''1))
((and (quotep prod)
(rationalp (unquote prod))
(equal (mfc-rw `(not (equal (fl (binary-* ,prod (unary-/ (expt '2 (binary-+ '1 ,n))))) '0))
t t mfc state) acl2::*t*))
(mv `(binary-+ '1 ,n) `(fl (binary-* ,prod (unary-/ (expt '2 (binary-+ '1 ,n)))))))
(t (mv nil prod))))
(defun remove-addend-gt-n (sum n mfc state)
(declare (xargs :guard (and (pseudo-termp sum)
(pseudo-termp n))
:guard-debug t))
(cond ((and (consp sum)
(equal (car sum) 'binary-+))
(b* ((left (cadr sum))
(right (caddr sum))
((mv term pow factor sgn) (remove-addend-gt-n left n mfc state))
((when pow) (mv `(binary-+ ,term ,right) pow factor sgn))
((mv term pow factor sgn) (remove-addend-gt-n right n mfc state))
((when pow) (mv `(binary-+ ,left ,term) pow factor sgn)))
(mv sum nil nil nil)))
((and (consp sum)
(equal (car sum) 'unary--))
(b* (((mv term pow factor sgn)
(remove-addend-gt-n (cadr sum) n mfc state)))
(mv `(unary-- ,term) pow factor (not sgn))))
(t (b* (((mv pow factor) (find-power-of-2-gt-n sum n mfc state)))
(if (and pow
(mfc-rw `(integerp ,factor) t t mfc state))
(mv `(binary-+ ,sum (unary-- (binary-* ,factor (expt '2 ,pow)))) pow factor nil)
(mv sum nil nil nil))))))
(defun bits-plus-mult-2-fn (term mfc state)
(declare (xargs :guard (pseudo-termp term)))
(cond ((and (consp term)
(eql (car term) 'bits))
(b* ((n (caddr term))
(m (cadddr term))
(sum (cadr term))
((mv new-sum k y ?sgn) (remove-addend-gt-n sum n mfc state)))
(if k
`(if (if (< ,n ,k)
(if (integerp ,y)
(integerp ,k)
'nil)
'nil)
(bits ,new-sum ,n ,m)
,term)
term)))
(t term)))
(local-defthm not-consp-sum-power
(implies (not (consp sum))
(not (mv-nth 0 (find-power-of-2-gt-n sum n mfc state)))))
(local-defthmd no-pow-when-sum-not-acl2-numberp
(implies (not (acl2-numberp (bits-evl sum a)))
(not (mv-nth 0 (find-power-of-2-gt-n sum n mfc state)))))
(local-defthmd remove-addend-gt-n-lemma
(b* (((mv new-sum k factor sgn) (remove-addend-gt-n sum n mfc state)))
(implies k
(equal (bits-evl sum a)
(+ (bits-evl new-sum a) (* (if sgn -1 1)
(expt 2 (bits-evl k a))
(bits-evl factor a))))))
:hints (("Goal" :in-theory (e/d (no-pow-when-sum-not-acl2-numberp)
()))))
(local-defthm bits-idx-not-numberp
(implies (or (not (acl2-numberp i))
(not (acl2-numberp j))
(not (acl2-numberp x)))
(equal (bits x i j) 0))
:hints (("Goal" :in-theory (e/d (bits) ()))))
(defthmd bits-plus-mult-2-meta
(implies (and (pseudo-termp x)
(alistp a))
(equal (bits-evl x a)
(bits-evl (bits-plus-mult-2-fn x mfc state) a)))
:hints (("Goal" :do-not-induct t
:use ((:instance remove-addend-gt-n-lemma
(sum (cadr x))
(n (caddr x)))
(:instance bits-plus-mult-2
(n (bits-evl (caddr x) a))
(m (bits-evl (cadddr x) a))
(y (* (if (mv-nth 3 (remove-addend-gt-n (cadr x) (caddr x) mfc state)) -1 1)
(bits-evl (mv-nth 2 (remove-addend-gt-n (cadr x) (caddr x) mfc state)) a)))
(k (bits-evl (mv-nth 1 (remove-addend-gt-n (cadr x) (caddr x) mfc state)) a))
(x (bits-evl (mv-nth 0 (remove-addend-gt-n (cadr x) (caddr x) mfc state)) a))))))
:rule-classes ((:meta :trigger-fns (bits))))
#|
For example:
(thm
(implies (integerp z)
(EQUAL (BITS (+ X (* 513/2 z)) 7 1)
(BITS (+ X (* 1/2 z)) 7 1)))
:hints (("Goal" :in-theory (e/d (bits-plus-mult-2-meta) ()))))
(thm
(implies (and (integerp k)
(integerp y)
(< n k))
(equal (bits (+ x (* (expt 2 k) y) (* (expt 2 l) z)) n m)
(bits (+ x (* (expt 2 l) z)) n m)))
:hints (("Goal" :in-theory (e/d (bits-plus-mult-2-meta) ()))))
|#
;;======================================================================
(defun addend-count (sum)
(declare (xargs :guard (pseudo-termp sum)))
(cond ((and (consp sum)
(equal (car sum) 'binary-+))
(+ (addend-count (cadr sum)) (addend-count (caddr sum))))
((and (consp sum)
(equal (car sum) 'unary--))
(addend-count (cadr sum)))
(t 1)))
(defun find-power-of-2-le-m (sum m gsum mfc state)
(declare (xargs :guard (and (pseudo-termp sum)
(pseudo-termp gsum)
(pseudo-termp m))))
(cond ((and (consp sum)
(or (eql (car sum) 'binary-+)
(eql (car sum) 'binary-*)))
(b* ((left (cadr sum))
(right (caddr sum))
((mv pow rem) (find-power-of-2-le-m left m gsum mfc state))
((when pow) (mv pow rem)))
(find-power-of-2-le-m right m gsum mfc state)))
((and (consp sum)
(eql (car sum) 'unary--))
(find-power-of-2-le-m (cadr sum) m gsum mfc state))
((and (consp sum)
(eql (car sum) 'expt)
(equal (cadr sum) ''2)
(equal (mfc-rw `(not (< ,m ,(caddr sum))) t t mfc state) acl2::*t*))
(b* ((term `(bits ,gsum (binary-+ '-1 ,(caddr sum)) '0))
(rem (mfc-rw term 'acl2::? nil mfc state))
;; subtracting rem and simplifying should result in fewer terms
(simp (mfc-rw `(binary-+ ,gsum (unary-- ,rem)) 'acl2::? nil mfc state)))
(if (and (pseudo-termp simp)
(<= (addend-count simp)
(addend-count gsum)))
(mv (caddr sum) rem)
(mv nil nil))))
((and (quotep sum)
(rationalp (unquote sum))
(equal (mfc-rw `(not (< ,m ,(kwote (expo (unquote sum))))) t t mfc state) acl2::*t*))
(b* ((term `(bits ,gsum (binary-+ '-1 ,(kwote (expo (unquote sum)))) '0))
(rem (mfc-rw term 'acl2::? nil mfc state))
;; subtracting rem and simplifying should result in fewer terms
(simp (mfc-rw `(binary-+ ,gsum (unary-- ,rem)) 'acl2::? nil mfc state)))
(if (and (pseudo-termp simp)
(<= (addend-count simp)
(addend-count gsum)))
(mv (caddr sum) rem)
(mv nil nil))))
(t (mv nil nil))))
(defun bits-plus-mult-1-meta-fn (term mfc state)
(declare (xargs :guard (pseudo-termp term)))
(cond ((and (consp term)
(eql (car term) 'bits))
(b* ((n (caddr term))
(m (cadddr term))
(sum (cadr term))
((mv pow rem) (find-power-of-2-le-m sum m sum mfc state))
(y `(binary-* (expt '2 (unary-- ,pow)) (binary-+ ,sum (unary-- ,rem)))))
(if pow
`(if (if (bvecp ,rem ,pow)
(if (not (< ,m ,pow))
(if (integerp ,y)
(if (integerp ,m)
(if (integerp ,n)
(integerp ,pow)
'nil)
'nil)
'nil)
'nil)
'nil)
(bits ,y
(binary-+ ,n (unary-- ,pow))
(binary-+ ,m (unary-- ,pow)))
,term)
term)))
(t term)))
(defthmd bits-plus-mult-1-meta-aux
(implies (and (pseudo-termp x)
(alistp a))
(equal (bits-evl x a)
(bits-evl (bits-plus-mult-1-meta-fn x mfc state) a)))
:hints (("Goal" :in-theory (e/d ()
((:REWRITE ACL2::DEFAULT-EXPT-2)
(:REWRITE ACL2::DEFAULT-LESS-THAN-1)
(:REWRITE ACL2::DEFAULT-LESS-THAN-2)
(:REWRITE ACL2::DEFAULT-MINUS)
(:REWRITE ACL2::DEFAULT-PLUS-1)
(:REWRITE ACL2::DEFAULT-TIMES-1)))
:use ((:instance bits-plus-mult-1
(y (* (EXPT 2 (- (BITS-EVL (MV-NTH 0 (FIND-POWER-OF-2-LE-M (CADR X) (CADDDR X) (CADR X) MFC STATE)) A)))
(- (BITS-EVL (CADR X) A)
(BITS-EVL (MV-NTH 1 (FIND-POWER-OF-2-LE-M (CADR X) (CADDDR X) (CADR X) MFC STATE)) A))))
(k (BITS-EVL (MV-NTH 0 (FIND-POWER-OF-2-LE-M (CADR X) (CADDDR X) (CADR X) MFC STATE)) A))
(n (BITS-EVL (CADDR X) A))
(m (bits-evl (CADDDR X) A))
(x (BITS-EVL (MV-NTH 1 (FIND-POWER-OF-2-LE-M (CADR X) (CADDDR X) (CADR X) MFC STATE)) A))))
:do-not-induct t))
:rule-classes ((:meta :trigger-fns (bits))))
;; bits-plus-mult-1-meta-aux works when bits-plus-mult-2-meta is enabled. Note:
;; bits-plus-mult-1-meta also simplifies expressions simplified by the the
;; rewrite rule bits-shift-up-1.
(deftheory bits-plus-mult-1-meta
'(bits-plus-mult-2-meta bits-plus-mult-1-meta-aux))
#|
For example:
(thm
(IMPLIES (AND (integerp l)
(<= K M)
(bvecp (+ x (* (expt 2 l) z)) k)
(INTEGERP Y)
(CASE-SPLIT (INTEGERP M))
(CASE-SPLIT (INTEGERP N))
(CASE-SPLIT (natp K)))
(EQUAL (BITS (+ x (* Y (EXPT 2 K)) (* (expt 2 l) z)) N M)
(BITS Y (- N K) (- M K))))
:hints (("Goal" :in-theory (e/d (bits-plus-mult-1-meta) ()))))
|#
;;======================================================================
(mutual-recursion
(defun bits-shatter-contains-term (cls x n m)
(declare (xargs :guard (pseudo-termp cls)))
(if (or (atom cls) (quotep cls))
nil
(if (and (eql (car cls) 'bits)
(quotep (caddr cls))
(quotep (cadddr cls))
(equal (cadr cls) x))
(b* ((h (unquote (caddr cls)))
(l (unquote (cadddr cls))))
(if (and (equal h n)
(integerp l)
(integerp m)
(> l m))
(cons (cons 'p (kwote l)) nil)
(if (and (equal l m)
(integerp n)
(integerp h)
(> n h))
(cons (cons 'p (kwote (1+ h))) nil)
nil)))
(if (and (eql (car cls) 'bitn)
(quotep (caddr cls))
(equal (cadr cls) x))
(b* ((h (unquote (caddr cls)))
(l (unquote (caddr cls))))
(if (and (equal h n)
(integerp l)
(integerp m)
(> l m))
(cons (cons 'p (kwote l)) nil)
(if (and (equal l m)
(integerp n)
(integerp h)
(> n h))
(cons (cons 'p (kwote (1+ h))) nil)
nil)))
(bits-shatter-contains-term-lst (cdr cls) x n m)))))
(defun bits-shatter-contains-term-lst (lst x n m)
(declare (xargs :guard (pseudo-term-listp lst)))
(if (atom lst)
nil
(or (bits-shatter-contains-term (car lst) x n m)
(bits-shatter-contains-term-lst (cdr lst) x n m)))))
(defun bits-shatter-walk-clauses (clss x n m)
(declare (xargs :guard (pseudo-term-listp clss)))
(if (atom clss)
nil
(or (bits-shatter-contains-term (car clss) x n m)
(bits-shatter-walk-clauses (cdr clss) x n m))))
(defun bits-shatter-fn (x n m mfc state)
(declare (xargs :guard t)
(ignore state))
(if (and (quotep n)
(quotep m)
(consp (cdr n))
(consp (cdr m)))
(bits-shatter-walk-clauses (mfc-clause mfc) x (unquote n) (unquote m))
nil))
(defthmd bits-plus-bits-shatter
(implies (and (bind-free (bits-shatter-fn x n m mfc state) (p))
(integerp m)
(integerp n)
(integerp p)
(<= m p)
(<= p n))
(equal (bits x n m)
(+ (bits x (1- p) m)
(* (expt 2 (- p m)) (bits x n p)))))
:hints (("Goal" :use (bits-plus-bits))))
(defthmd bits-bits-shatter
(implies (and (syntaxp (and (quotep c)
(quotep i)
(quotep j)))
(bind-free (bits-shatter-fn x i j mfc state) (p))
(integerp p)
(integerp i)
(integerp j)
(<= j p)
(<= p i))
(equal (equal (bits x i j) c)
(and (bvecp c (1+ (- i j)))
(equal (bits x i p) (bits c (- i j) (- p j)))
(equal (bits x (1- p) j) (bits c (1- (- p j)) 0)))))
:hints (("Goal" :in-theory (e/d () ())
:use ((:instance bits-plus-bits
(x x) (n i) (m j) (p p))
(:instance bits-plus-bits
(x c) (n (- i j)) (m 0) (p (- p j)))
(:instance bits-bits
(x x) (i i) (j j) (k (1- (- p j))) (l 0))
(:instance bits-bits
(x x) (i i) (j j) (k (- i j)) (l (- p j)))))))
#| For example:
(thm
(implies (and (bvecp x 32)
(equal (bits x 30 0) 0))
(zerp x (sp)))
:hints (("Goal" :in-theory (e/d (zerp encodingp expf sp sigf
bits-bits-shatter) ()))))
|#
|