1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; April 2019
(in-package "ADE")
(include-book "../link-joint")
(include-book "../tv-if")
(local (include-book "arithmetic-3/top" :dir :system))
(local (in-theory (disable nth)))
;; ======================================================================
;;; Table of Contents:
;;;
;;; 1. DE Module Generator of ARB-MERGE
;;; 2. Properties of ARB-MERGE
;; ======================================================================
;; 1. DE Module Generator of ARB-MERGE
;;
;; Construct a DE module generator for a simple first-come-first-served (FCFS)
;; arbitrated merge model using the link-joint model.
;; If two input sources are available at "approximately" the same time, the
;; arbitrated merge will RANDOMLY decide which source to service. In our
;; modeling, we use an oracle signal "select" to perform random selections when
;; necessary.
(defconst *arb-merge$select-num* 1)
(defconst *arb-merge$go-num* 1)
(defun arb-merge$data-ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ 3 (* 2 (mbe :logic (nfix data-size)
:exec data-size))))
(defun arb-merge$ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*
*arb-merge$go-num*))
;; DE module generator of ARB-MERGE
(module-generator
arb-merge* (data-size)
(si 'arb-merge data-size)
(list* 'full-in0 'full-in1 'empty-out-
(append (sis 'data0-in 0 data-size)
(sis 'data1-in 0 data-size)
(cons 'select ;; An oracle signal performing random selections
(sis 'go 0 *arb-merge$go-num*))))
(list* 'act 'act0 'act1
(sis 'data-out 0 data-size))
()
(list
'(g0 (b-select) b-bool (select))
'(g1 (b-select~) b-not (b-select))
'(g2 (empty-in0-) b-not (full-in0))
'(g3 (empty-in1-) b-not (full-in1))
'(h0 (m-full-in0-1) b-and (full-in0 empty-in1-))
'(h1 (m-full-in0-2) b-and3 (full-in0 full-in1 b-select~))
'(h2 (m-full-in0) b-or (m-full-in0-1 m-full-in0-2))
'(h3 (m-full-in1-1) b-and (empty-in0- full-in1))
'(h4 (m-full-in1-2) b-and3 (full-in0 full-in1 b-select))
'(h5 (m-full-in1) b-or (m-full-in1-1 m-full-in1-2))
(list 'arb-merge-cntl0
'(act0)
'joint-cntl
(list 'm-full-in0 'empty-out- (si 'go 0)))
(list 'arb-merge-cntl1
'(act1)
'joint-cntl
(list 'm-full-in1 'empty-out- (si 'go 0)))
'(arb-merge-cntl (act) b-or (act0 act1))
(list 'arb-merge-op
(sis 'data-out 0 data-size)
(si 'tv-if (tree-number (make-tree data-size)))
(cons 'act1
(append (sis 'data1-in 0 data-size)
(sis 'data0-in 0 data-size)))))
(declare (xargs :guard (natp data-size))))
;; DE netlist generator. A generated netlist will contain an instance of
;; ARB-MERGE.
(defund arb-merge$netlist (data-size)
(declare (xargs :guard (natp data-size)))
(cons (arb-merge* data-size)
(union$ *joint-cntl*
(tv-if$netlist (make-tree data-size))
:test 'equal)))
;; Recognizer for ARB-MERGE
(defund arb-merge& (netlist data-size)
(declare (xargs :guard (and (alistp netlist)
(natp data-size))))
(b* ((subnetlist (delete-to-eq (si 'arb-merge data-size) netlist)))
(and (equal (assoc (si 'arb-merge data-size) netlist)
(arb-merge* data-size))
(joint-cntl& subnetlist)
(tv-if& subnetlist (make-tree data-size)))))
;; Sanity check
(local
(defthmd check-arb-merge$netlist-64
(and (net-syntax-okp (arb-merge$netlist 64))
(net-arity-okp (arb-merge$netlist 64))
(arb-merge& (arb-merge$netlist 64) 64))))
;; Extract the input and output signals for ARB-MERGE
(progn
;; Extract the 1st input data item
(defun arb-merge$data0-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(take (mbe :logic (nfix data-size)
:exec data-size)
(nthcdr 3 inputs)))
(defthm len-arb-merge$data0-in
(equal (len (arb-merge$data0-in inputs data-size))
(nfix data-size)))
(in-theory (disable arb-merge$data0-in))
;; Extract the 2nd input data item
(defun arb-merge$data1-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((size (mbe :logic (nfix data-size)
:exec data-size)))
(take size
(nthcdr (+ 3 size) inputs))))
(defthm len-arb-merge$data1-in
(equal (len (arb-merge$data1-in inputs data-size))
(nfix data-size)))
(in-theory (disable arb-merge$data1-in))
;; Extract the "act0" signal
(defund arb-merge$act0 (inputs data-size)
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(select (nth (arb-merge$data-ins-len data-size) inputs))
(go-signals (nthcdr (+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*)
inputs))
(b-select (f-bool select))
(go-arb-merge (nth 0 go-signals))
(m-full-in0 (f-or (f-and full-in0
(f-not full-in1))
(f-and3 full-in0
full-in1
(f-not b-select)))))
(joint-act m-full-in0 empty-out- go-arb-merge)))
(defthm arb-merge$act0-inactive
(implies (or (not (nth 0 inputs))
(equal (nth 2 inputs) t))
(not (arb-merge$act0 inputs data-size)))
:hints (("Goal" :in-theory (enable f-and3 arb-merge$act0))))
;; Extract the "act1" signal
(defund arb-merge$act1 (inputs data-size)
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(select (nth (arb-merge$data-ins-len data-size) inputs))
(go-signals (nthcdr (+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*)
inputs))
(b-select (f-bool select))
(go-arb-merge (nth 0 go-signals))
(m-full-in1 (f-or (f-and (f-not full-in0)
full-in1)
(f-and3 full-in0
full-in1
b-select))))
(joint-act m-full-in1 empty-out- go-arb-merge)))
(defthm arb-merge$act1-inactive
(implies (or (not (nth 1 inputs))
(equal (nth 2 inputs) t))
(not (arb-merge$act1 inputs data-size)))
:hints (("Goal" :in-theory (enable f-and3 arb-merge$act1))))
(local (in-theory (enable booleanp-car-of-bv)))
(defthm arb-merge$act-mutually-exclusive
(implies (and (booleanp (nth 0 inputs))
(booleanp (nth 1 inputs))
(arb-merge$act0 inputs data-size))
(not (arb-merge$act1 inputs data-size)))
:hints (("Goal" :in-theory (enable f-and3
arb-merge$act0
arb-merge$act1))))
;; Extract the "act" signal
(defund arb-merge$act (inputs data-size)
(f-or (arb-merge$act0 inputs data-size)
(arb-merge$act1 inputs data-size)))
(defthm arb-merge$act-inactive
(implies (or (and (not (nth 0 inputs))
(not (nth 1 inputs)))
(equal (nth 2 inputs) t))
(not (arb-merge$act inputs data-size)))
:hints (("Goal" :in-theory (enable arb-merge$act))))
;; Extract the output data
(defund arb-merge$data-out (inputs data-size)
(b* ((data0-in (arb-merge$data0-in inputs data-size))
(data1-in (arb-merge$data1-in inputs data-size))
(act1 (arb-merge$act1 inputs data-size)))
(fv-if act1 data1-in data0-in)))
(defthm len-arb-merge$data-out
(equal (len (arb-merge$data-out inputs data-size))
(nfix data-size))
:hints (("Goal" :in-theory (enable arb-merge$data-out))))
)
;; The value lemma for ARB-MERGE
(defthm arb-merge$value
(b* ((inputs (list* full-in0 full-in1 empty-out-
(append data0-in data1-in
(cons select go-signals)))))
(implies (and (posp data-size)
(arb-merge& netlist data-size)
(true-listp data0-in)
(equal (len data0-in) data-size)
(true-listp data1-in)
(equal (len data1-in) data-size))
(equal (se (si 'arb-merge data-size) inputs st netlist)
(list* (arb-merge$act inputs data-size)
(arb-merge$act0 inputs data-size)
(arb-merge$act1 inputs data-size)
(arb-merge$data-out inputs data-size)))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(se (si 'arb-merge data-size) inputs st netlist))
:in-theory (e/d (de-rules
arb-merge&
arb-merge*$destructure
arb-merge$act
arb-merge$act0
arb-merge$act1
arb-merge$data0-in
arb-merge$data1-in
arb-merge$data-out)
(de-module-disabled-rules)))))
;; ======================================================================
;; 2. Properties of ARB-MERGE
(defthmd arb-merge$random-select
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(select (nth (arb-merge$data-ins-len data-size) inputs))
(go-signals (nthcdr (+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*)
inputs))
(b-select (f-bool select))
(go-arb-merge (nth 0 go-signals)))
(implies (and (equal full-in0 t)
(equal full-in1 t)
(not empty-out-)
go-arb-merge)
(and (equal (arb-merge$act0 inputs data-size)
(not b-select))
(equal (arb-merge$act1 inputs data-size)
b-select))))
:hints (("Goal" :in-theory (enable joint-act
f-bool
arb-merge$act0
arb-merge$act1))))
(defthmd arb-merge$select-0
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(go-signals (nthcdr (+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*)
inputs))
(go-arb-merge (nth 0 go-signals)))
(implies (and (equal full-in0 t)
(not full-in1)
(not empty-out-)
go-arb-merge)
(equal (arb-merge$act0 inputs data-size)
t)))
:hints (("Goal" :in-theory (enable f-bool
arb-merge$act0))))
(defthmd arb-merge$select-1
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(go-signals (nthcdr (+ (arb-merge$data-ins-len data-size)
*arb-merge$select-num*)
inputs))
(go-arb-merge (nth 0 go-signals)))
(implies (and (not full-in0)
(equal full-in1 t)
(not empty-out-)
go-arb-merge)
(equal (arb-merge$act1 inputs data-size)
t)))
:hints (("Goal" :in-theory (enable f-bool
arb-merge$act1))))
|