1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
|
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Warren A. Hunt, Jr. and Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Warren A. Hunt, Jr. <hunt@cs.utexas.edu>
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
; (ld "de.lisp" :ld-pre-eval-print t)
; This collection of things we need to define ACL2 version of DUAL-EVAL.
; !!! Should CONSP-N and TRUE-LISTP-AT-LEAST-N be exchanged for
; (and (TRUE-LISTP x) (= (LEN x) n))?
(in-package "ADE")
(include-book "assoc-eq-value")
(include-book "f-functions")
(include-book "macros")
(include-book "primp-database")
(include-book "tools/flag" :dir :system)
;; ======================================================================
;;; Macros to simplify specifications.
(defmacro consp-n (x n)
(declare (xargs :guard (natp n)))
(if (<= n 0)
''t
(if (= n 1)
`(consp ,x)
(list 'and
`(consp ,x)
`(consp-n (cdr ,x) ,(- n 1))))))
(defmacro true-listp-at-least-n (x n)
(declare (xargs :guard (natp n)))
(list 'and
(list 'true-listp `,x)
`(consp-n ,x ,n)))
;; This has to be connected to SE and DE below!!!
(defun primp-call-syntaxp (fn ins st)
(declare (xargs :guard t))
(and (symbolp fn)
(primp fn)
(true-listp ins)
(true-listp st)))
(defun primp-call-arityp (fn ins st)
(declare (xargs :guard (primp-call-syntaxp fn ins st)))
(and (= (primp-ins fn) (len ins))
(= (primp-st fn) (len st))))
(defun se-primp-apply (fn ins st)
(declare (xargs :guard (and (primp-call-syntaxp fn ins st)
(primp-call-arityp fn ins st))))
(case fn
(b-and (list (f-and (car ins) (cadr ins))))
(b-and3 (list (f-and3 (car ins) (cadr ins) (caddr ins))))
(b-and4 (list (f-and4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-and5 (list (f-and5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-bool (list (f-bool (car ins))))
(b-buf (list (f-buf (car ins))))
(b-equv (list (f-equv (car ins) (cadr ins))))
(b-if (list (f-if (car ins) (cadr ins) (caddr ins))))
(b-nand (list (f-nand (car ins) (cadr ins))))
(b-nand3 (list (f-nand3 (car ins) (cadr ins) (caddr ins))))
(b-nand4 (list (f-nand4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-nand5 (list (f-nand5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-nand6 (list (f-nand6 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins)))))
(b-nand8 (list (f-nand8 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins))
(caddr (cddddr ins)) (cadddr (cddddr ins)))))
(b-nor (list (f-nor (car ins) (cadr ins))))
(b-nor3 (list (f-nor3 (car ins) (cadr ins) (caddr ins))))
(b-nor4 (list (f-nor4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-nor5 (list (f-nor5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-nor6 (list (f-nor6 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins)))))
(b-nor8 (list (f-nor8 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins))
(caddr (cddddr ins)) (cadddr (cddddr ins)))))
(b-not (list (f-not (car ins))))
(b-or (list (f-or (car ins) (cadr ins))))
(b-or3 (list (f-or3 (car ins) (cadr ins) (caddr ins))))
(b-or4 (list (f-or4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-or5 (list (f-or5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-xnor (list (f-xnor (car ins) (cadr ins))))
(b-xor (list (f-xor (car ins) (cadr ins))))
(ff (list (f-buf (car st))
(f-not (car st))))
(latch (list (f-if (car ins)
(cadr ins)
(car st))
(f-if (car ins)
(f-not (cadr ins))
(f-not (car st)))))
;; LINK-CNTL is a new primitive for modeling self-timed modules using the
;; link-joint model.
(link-cntl (list (f-buf (car st))))
(pullup (list (f-pullup (car ins))))
(t-buf (list (ft-buf (car ins) (cadr ins))))
(t-wire (list (ft-wire (car ins) (cadr ins))))
(vdd (list T))
(vss (list NIL))
(wire (list (car ins)))
(otherwise nil)))
(defun de-primp-apply (fn ins st)
(declare (xargs :guard (and (primp-call-syntaxp fn ins st)
(primp-call-arityp fn ins st))))
(case fn
((ff latch) (list (f-if (car ins) (cadr ins) (car st))))
;; LINK-CNTL is a new primitive for modeling self-timed modules using the
;; link-joint model.
(link-cntl (list (f-sr (car ins) (cadr ins) (car st))))
(otherwise nil)))
(defun len-se-primp-apply (fn ins st)
(declare (xargs :guard t)
(ignore ins st))
(case fn
((ff latch) 2)
(otherwise 1)))
(defun len-de-primp-apply (fn ins st)
(declare (xargs :guard (true-listp ins))
(ignore ins st))
(case fn
((ff latch link-cntl) 1)
(otherwise 0)))
(defthm len-de-primp-apply-lemma
(equal (len (de-primp-apply fn ins st))
(len-de-primp-apply fn ins st)))
(in-theory (disable se-primp-apply de-primp-apply))
; We now define the DE language. This is a derivative from the DUAL-EVAL
; language. The DE language is designed to be simple, suitable for teaching,
; and for performing experiments.
; A module is the representation of a non-primitive FSM. It is composed of
; five elements: name, inputs, outputs, states, and occurrences. Each
; occurrence is itself composed of four pieces: name, outputs, primitive or
; module reference, and inputs. The following macros are the destructor
; operations for accessing the various pieces of a module.
(deflabel md-accessors-defuns-section)
(defun-inline md-name (x)
(declare (xargs :guard (consp-n x 1)))
(car x))
(defun-inline md-ins (x)
(declare (xargs :guard (consp-n x 2)))
(cadr x))
(defun-inline md-outs (x)
(declare (xargs :guard (consp-n x 3)))
(caddr x))
(defun-inline md-st (x)
(declare (xargs :guard (consp-n x 4)))
(cadddr x))
(defun-inline md-occs (x)
(declare (xargs :guard (consp-n x 5)))
(car (cddddr x)))
(deftheory md-accessors-defuns
(set-difference-theories (current-theory :here)
(current-theory 'md-accessors-defuns-section)))
(deflabel occ-accessors-defuns-section)
(defun-inline occ-name (x)
(declare (xargs :guard (consp-n x 1)))
(car x))
(defun-inline occ-outs (x)
(declare (xargs :guard (consp-n x 2)))
(cadr x))
(defun-inline occ-fn (x)
(declare (xargs :guard (consp-n x 3)))
(caddr x))
(defun-inline occ-ins (x)
(declare (xargs :guard (consp-n x 4)))
(cadddr x))
(deftheory occ-accessors-defuns
(set-difference-theories (current-theory :here)
(current-theory 'occ-accessors-defuns-section)))
; We define the syntactic restrictions for occurrences and modules.
(defun occ-syntax-okp (occ)
(declare (xargs :guard t))
(and (true-listp-at-least-n occ 4)
(let ((occ-name (occ-name occ))
(occ-outs (occ-outs occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ)))
(and (symbolp occ-name)
(symbol-listp occ-outs)
(no-duplicatesp-eq occ-outs)
(symbolp occ-fn)
(symbol-listp occ-ins)))))
(defun occs-syntax-okp (occs)
(declare (xargs :guard t))
(if (atom occs)
(eq occs nil)
(and (occ-syntax-okp (car occs))
(occs-syntax-okp (cdr occs)))))
(defthm occs-syntax-okp-forward-symbol-alistp
(implies (occs-syntax-okp occs)
(symbol-alistp occs))
:rule-classes :forward-chaining)
(defun module-syntax-okp (module)
(declare (xargs :guard t))
(and (true-listp-at-least-n module 5)
(let ((md-name (md-name module))
(md-ins (md-ins module))
(md-outs (md-outs module))
(md-st (md-st module))
(md-occs (md-occs module)))
(and
(symbolp md-name)
;; Inputs
(symbol-listp md-ins)
(no-duplicatesp-eq md-ins)
;; Outputs
(symbol-listp md-outs)
(no-duplicatesp-eq md-outs)
;; No degenerative modules
(or (consp md-ins) ; Module must have at least
(consp md-outs)) ; one input or one output
;; Occurrences
(occs-syntax-okp md-occs)
(no-duplicatesp-eq (strip-cars md-occs))
;; States
(symbol-listp md-st)
(no-duplicatesp-eq md-st)
;; State names subset of Occurrence names
(subsetp md-st (strip-cars md-occs))
))))
(defun net-syntax-okp (netlist)
(declare (xargs :guard t
:verify-guards nil))
(if (atom netlist)
(null netlist)
(let* ((module (car netlist))
(rest-netlist (cdr netlist)))
(and
(module-syntax-okp module)
(let ((module-name (car module)))
(and (net-syntax-okp rest-netlist)
(not (primp module-name)) ; Module name is not a primitive
(not (assoc-eq module-name ; nor previously defined module
rest-netlist))))))))
; Some facts about our netlist syntax
(defthm net-syntax-okp-forward-to-symbol-alistp
;; For effeciency, this lemms before guard proof for NET-SYNTAX-OKP
(implies (net-syntax-okp x)
(symbol-alistp x))
:rule-classes :forward-chaining)
(verify-guards net-syntax-okp)
(defthm net-syntax-okp-delete-to-eq-netlist
(implies (net-syntax-okp netlist)
(net-syntax-okp (delete-to-eq fn netlist))))
(defthmd assoc-eq-of-non-fn-netlist
(implies (and (net-syntax-okp netlist)
(atom (assoc-eq fn netlist)))
(equal (assoc-eq fn netlist) nil)))
(defthm symbol-listp-md-of-ins-outs-and-st
(implies (and (net-syntax-okp netlist)
(consp (assoc-equal fn netlist)))
(and (symbol-listp (md-ins (assoc-equal fn netlist)))
(symbol-listp (md-outs (assoc-equal fn netlist)))
(symbol-listp (md-st (assoc-eq fn netlist)))))
:hints (("Goal" :induct (assoc-equal fn netlist))))
(defthm net-syntax-okp->module-syntax-okp
(implies (and (net-syntax-okp netlist)
(consp (assoc-equal fn netlist)))
(module-syntax-okp (assoc-equal fn netlist)))
:hints (("Goal" :in-theory (disable module-syntax-okp)))
:rule-classes (:rewrite :type-prescription))
; Facts that would be expensive to have around because of the function symbols
; involved on the left-hand side, so we globaly disable them and enable them
; when appropriate.
(defthmd consp-assoc-eq-fn-of-non-empty-netlist
(implies (and (net-syntax-okp netlist)
(not (atom (assoc-eq fn netlist))))
(and (consp (assoc-eq fn netlist))
(consp (cdr (assoc-eq fn netlist)))
(consp (cddr (assoc-eq fn netlist)))
(consp (cdddr (assoc-eq fn netlist)))
(consp (cddddr (assoc-eq fn netlist)))))
:hints (("Goal" :induct (assoc-equal fn netlist))))
; Arity Recognizer
(defun occ-arity-okp (occ netlist)
(declare (xargs :guard (and (net-syntax-okp netlist)
(occ-syntax-okp occ))
:guard-hints
(("Goal" :in-theory
(enable consp-assoc-eq-fn-of-non-empty-netlist)))))
(let* ((occ-outs (occ-outs occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(primp (primp occ-fn))
(len-ins (len occ-ins))
(len-outs (len occ-outs)))
(if primp
(and (= (primp-ins occ-fn) len-ins)
(= (primp-outs occ-fn) len-outs))
(let ((module (assoc-eq occ-fn netlist)))
(if (atom module)
nil
(and (= (len (md-ins module)) len-ins)
(= (len (md-outs module)) len-outs)))))))
(defun occs-arity-okp (occs netlist)
(declare (xargs :guard (and (net-syntax-okp netlist)
(occs-syntax-okp occs))
:guard-hints
(("Goal" :in-theory (disable occ-syntax-okp)))))
(if (atom occs)
t
(and (occ-arity-okp (car occs) netlist)
(occs-arity-okp (cdr occs) netlist))))
(defun net-arity-okp (netlist)
(declare (xargs :guard (net-syntax-okp netlist)))
(if (atom netlist)
t
(let* ((module (car netlist))
(cdr-netlist (cdr netlist))
(md-name (md-name module)))
(and (not (assoc-eq md-name cdr-netlist)) ; No self-referential modules
(net-arity-okp cdr-netlist) ; Check all inferior modules
(occs-arity-okp (md-occs module) ; For each occurrence, check
cdr-netlist))))) ; its arity
(in-theory (disable occ-accessors-defuns md-accessors-defuns))
(defthm net-arity-okp-of-delete-to-eq
(implies (net-arity-okp netlist)
(net-arity-okp (delete-to-eq fn netlist))))
(defthm occs-syntax-okp-md-occs-assoc-eq-fn-netlist
;; Silly rule? If the ASSOC-EQ is NIL, then MD-OCCS is NIL
(implies (net-syntax-okp netlist)
(occs-syntax-okp (md-occs (assoc-eq fn netlist))))
:hints (("Goal"
:in-theory (enable md-occs)
:induct (assoc-eq fn netlist))))
(in-theory (disable net-syntax-okp))
(defthm occs-arity-okp-md-occs-assoc-eq-fn-netlist
(implies (and (net-arity-okp netlist)
(assoc-eq fn netlist))
(occs-arity-okp (md-occs (assoc-eq fn netlist))
(delete-to-eq fn netlist))))
; Measure for the netlist evaluation functions
(defthm len-fn-delete-to-eq
(implies (or (consp netlist)
(consp (assoc-eq fn netlist)))
(and (< (len (delete-to-eq fn netlist))
(len netlist))
(< (+ 1 (len (delete-to-eq fn netlist)))
(+ 1 (len netlist)))))
:rule-classes (:linear :rewrite))
; The measure function for the DE recursions.
(defun se-measure (fn-or-occs netlist)
(declare (xargs :guard t))
(make-ord (1+ (len netlist))
1
(acl2-count fn-or-occs)))
(defthm acl2-count-of-occs-fn-car-occs
(implies (consp (double-rewrite occs))
(< (acl2-count (occ-fn (car occs)))
(acl2-count occs)))
:hints (("Goal" :in-theory (enable occ-fn)))
:rule-classes (:rewrite :linear))
(defun st-okp-guard (fn st)
(declare (xargs :guard t))
(and (symbolp fn)
(true-listp st)))
(defun st-occs-okp-guard (occs st-alist netlist)
(declare (xargs :guard (net-syntax-okp netlist)))
(and (symbol-alistp st-alist)
(occs-syntax-okp occs)
(occs-arity-okp occs netlist)
(no-duplicatesp-eq (strip-cars occs))
;;What about adding (no-duplicatesp-eq (strip-cars st-alist)) ?
))
; The ST-OKP and ST-OCC-OKP functions check structure of state argument. These
; functions are intended to make assure that the ST argument is "isomorphic" to
; the way it will be destructured by the SE, SE-OCC interpreter.
(mutual-recursion
(defun st-okp (fn st netlist)
(declare (xargs :measure (se-measure fn netlist)
:guard (and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-okp-guard fn st))
:guard-hints
(("Goal"
:use net-syntax-okp->module-syntax-okp
:in-theory (disable assoc-equal
alistp
symbol-alistp
symbol-listp)))))
(if (primp fn)
(= (primp-st fn) (len st))
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let* ((md-st (md-st module))
(md-occs (md-occs module))
(st-alist (pairlis$ md-st st)))
(and (= (len md-st) (len st))
(st-occs-okp md-occs st-alist
(delete-to-eq fn netlist))))))))
(defun st-occs-okp (occs st-alist netlist)
(declare (xargs :measure (se-measure occs netlist)
:guard (and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-occs-okp-guard occs st-alist netlist))))
(if (atom occs)
t
(let* ((occ (car occs))
(occ-name (occ-name occ))
(occ-fn (occ-fn occ))
(st (assoc-eq-value occ-name st-alist)))
(and (true-listp st)
(st-okp occ-fn st netlist)
(st-occs-okp (cdr occs) st-alist netlist))))))
(defthm st-occs-okp-update-alist
(implies (not (member occ-name (strip-cars occs)))
(equal (st-occs-okp occs
(update-alist occ-name st st-alist)
netlist)
(st-occs-okp occs st-alist netlist)))
:hints (("Goal"
:in-theory (enable occ-name))
("Subgoal *1/3"
:expand (st-occs-okp occs
(update-alist occ-name st st-alist)
netlist))))
; DE
; This is an attempt to define the DE interpreter which is similar in spirit to
; the NQTHM version of DUAL-EVAL language. We define the DE syntax recognizer
; and the DE semantic interpreter. The DE language recognizer is actually a
; litany of recognizers, each of which futher constrain the language.
; This DE language is designed to represent FSMs, thus the primitives are
; themselves FSMs. To evaluate a module requires its inputs and its state
; (combinational-only modules do not have a state). We require a module to
; have at least one input or one output.
; The name DUAL-EVAL is derived from the fact that DUAL-EVAL (DE) requires two
; inputs (the current inputs and state), produces two outputs (the outputs and
; the next state), and it requires two passes to compute the result. We
; actually define two pairs of mutually recursive functions: SE (Single Eval)
; and DE (Dual-Eval). SE computes the "wire" values for a module, and DE
; computes the next state value after calling SE to get the wire values.
(defun se-ins-guard (fn ins netlist)
(declare (xargs :guard (net-syntax-okp netlist)
:guard-hints
(("Goal" :in-theory (e/d (consp-assoc-eq-fn-of-non-empty-netlist)
(md-occs md-st))))))
(and (symbolp fn)
(true-listp ins)
;; Check form of top-level INS argument
(if (primp fn)
(equal (primp-ins fn) (len ins))
(if (assoc-eq fn netlist)
(equal (len (md-ins (assoc-eq fn netlist)))
(len ins))
nil))))
(defun se-guard (fn ins st netlist)
(declare (xargs :guard t))
(and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-okp-guard fn st)
(st-okp fn st netlist)
(se-ins-guard fn ins netlist)))
(defun se-occ-guard (occs wire-alist st-alist netlist)
(declare (xargs :guard t))
(and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-occs-okp-guard occs st-alist netlist)
(st-occs-okp occs st-alist netlist)
;; Check form of WIRE-ALIST
(symbol-alistp wire-alist)
;; Likely need to know that WIRE-ALIST has values for all inputs
))
(mutual-recursion
(defun se (fn ins st netlist)
(declare (xargs :measure (se-measure fn netlist)
:guard (se-guard fn ins st netlist)
:verify-guards nil))
(if (primp fn)
(se-primp-apply fn ins st)
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let* ((md-ins (md-ins module))
(md-outs (md-outs module))
(md-st (md-st module))
(md-occs (md-occs module))
(wire-alist (pairlis$ md-ins ins))
(st-alist (pairlis$ md-st st)))
(assoc-eq-values
md-outs
(se-occ md-occs wire-alist st-alist
(delete-to-eq fn netlist))))))))
(defun se-occ (occs wire-alist st-alist netlist)
(declare (xargs :measure (se-measure occs netlist)
:guard (se-occ-guard occs wire-alist st-alist netlist)
:verify-guards nil))
(if (atom occs)
wire-alist
(let* ((occ (car occs))
(occ-name (occ-name occ))
(occ-outs (occ-outs occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st (assoc-eq-value occ-name st-alist))
(new-vals (se occ-fn ins st netlist))
(new-alist (pairlis$ occ-outs new-vals))
(new-wire-alist (append new-alist wire-alist)))
(se-occ (cdr occs) new-wire-alist st-alist netlist)))))
(mutual-recursion
(defun de (fn ins st netlist)
(declare (xargs :measure (se-measure fn netlist)
:guard (se-guard fn ins st netlist)
:verify-guards nil))
(if (primp fn)
(de-primp-apply fn ins st)
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let* ((md-ins (md-ins module))
(md-st (md-st module))
(md-occs (md-occs module))
(wire-alist (pairlis$ md-ins ins))
(st-alist (pairlis$ md-st st))
(new-netlist (delete-to-eq fn netlist)))
(assoc-eq-values
md-st
(de-occ md-occs
(se-occ md-occs wire-alist st-alist new-netlist)
st-alist
new-netlist)))))))
(defun de-occ (occs wire-alist st-alist netlist)
(declare (xargs :measure (se-measure occs netlist)
:guard (se-occ-guard occs wire-alist st-alist netlist)
:verify-guards nil))
(if (atom occs)
st-alist
(let* ((occ (car occs))
(occ-name (occ-name occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st-pair (assoc-eq occ-name st-alist))
(st (mbe :logic (assoc-eq-value occ-name st-alist)
:exec (cdr st-pair)))
(new-st-alist
(mbe :logic (update-alist occ-name
(de occ-fn ins st netlist)
st-alist)
:exec (if (atom st-pair)
st-alist
(update-alist occ-name
(de occ-fn ins st netlist)
st-alist)))))
(de-occ (cdr occs) wire-alist new-st-alist netlist)))))
; se lemmas
(defthmd open-se
(and
(implies (primp fn)
(equal (se fn ins st netlist)
(se-primp-apply fn ins st)))
(implies (not (primp fn))
(equal (se fn ins st netlist)
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let* ((md-ins (md-ins module))
(md-outs (md-outs module))
(md-st (md-st module))
(md-occs (md-occs module))
(wire-alist (pairlis$ md-ins ins))
(st-alist (pairlis$ md-st st)))
(assoc-eq-values
md-outs
(se-occ md-occs wire-alist st-alist
(delete-to-eq fn netlist))))))))))
(defun se-occ-induct (occs wire-alist st-alist netlist)
;; Need this because "induction machine" for SE-OCC is involved with a mutual
;; recursion; this definition is stand alone.
(declare (ignorable st-alist netlist))
(if (atom occs)
wire-alist
(let* ((occ (car occs))
(occ-name (occ-name occ))
(occ-outs (occ-outs occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st (assoc-eq-value occ-name st-alist))
(new-vals (se occ-fn ins st netlist))
(new-alist (pairlis$ occ-outs new-vals))
(new-wire-alist (append new-alist wire-alist)))
(se-occ-induct (cdr occs) new-wire-alist st-alist netlist))))
(encapsulate
()
(local
(defthm symbol-alistp-fact-append-cons
(implies (and (symbolp sym)
(symbol-alistp sym-alist)
(symbol-alistp first-sym-alist))
(symbol-alistp (append first-sym-alist
(cons (cons sym anything)
sym-alist))))))
(local
(defthm symbol-alistp-fact-append-pairlis$
(implies (and (symbol-alistp wire-alist)
(consp (double-rewrite occs))
(occs-syntax-okp occs))
(symbol-alistp (append (pairlis$ (occ-outs (car occs))
anything)
wire-alist)))))
(defthm symbol-alistp-se-occ
(implies (and (symbol-alistp wire-alist)
(occs-syntax-okp occs))
(and (alistp (se-occ occs wire-alist st-alist netlist))
(symbol-alistp (se-occ occs wire-alist st-alist netlist))))
:hints
(("Goal"
:induct (se-occ-induct occs wire-alist st-alist netlist)
:in-theory (disable symbol-alistp occ-outs
occ-arity-okp occs-arity-okp)))))
(local
(defthm symbol-listp=>true-listp
(implies (symbol-listp x)
(true-listp x))))
(verify-guards se
;;:guard-debug t
:hints (("Subgoal 2" :use net-syntax-okp->module-syntax-okp)))
(make-event
`(progn
,@(primitives-lemmas-gen
'se
'((b-and (list (f-and (car ins) (cadr ins))))
(b-and3 (list (f-and3 (car ins) (cadr ins) (caddr ins))))
(b-and4 (list (f-and4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-and5 (list (f-and5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-bool (list (f-bool (car ins))))
(b-buf (list (f-buf (car ins))))
(b-equv (list (f-equv (car ins) (cadr ins))))
(b-if (list (f-if (car ins) (cadr ins) (caddr ins))))
(b-nand (list (f-nand (car ins) (cadr ins))))
(b-nand3 (list (f-nand3 (car ins) (cadr ins) (caddr ins))))
(b-nand4 (list (f-nand4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-nand5 (list (f-nand5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-nand6 (list (f-nand6 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins)))))
(b-nand8 (list (f-nand8 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins))
(caddr (cddddr ins)) (cadddr (cddddr ins)))))
(b-nor (list (f-nor (car ins) (cadr ins))))
(b-nor3 (list (f-nor3 (car ins) (cadr ins) (caddr ins))))
(b-nor4 (list (f-nor4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-nor5 (list (f-nor5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-nor6 (list (f-nor6 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins)))))
(b-nor8 (list (f-nor8 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)) (cadr (cddddr ins))
(caddr (cddddr ins)) (cadddr (cddddr ins)))))
(b-not (list (f-not (car ins))))
(b-or (list (f-or (car ins) (cadr ins))))
(b-or3 (list (f-or3 (car ins) (cadr ins) (caddr ins))))
(b-or4 (list (f-or4 (car ins) (cadr ins)
(caddr ins) (cadddr ins))))
(b-or5 (list (f-or5 (car ins) (cadr ins)
(caddr ins) (cadddr ins)
(car (cddddr ins)))))
(b-xnor (list (f-xnor (car ins) (cadr ins))))
(b-xor (list (f-xor (car ins) (cadr ins))))
(ff (list (f-buf (car st))
(f-not (car st))))
(latch (list (f-if (car ins)
(cadr ins)
(car st))
(f-if (car ins)
(f-not (cadr ins))
(f-not (car st)))))
(link-cntl (list (f-buf (car st))))
(pullup (list (f-pullup (car ins))))
(t-buf (list (ft-buf (car ins) (cadr ins))))
(t-wire (list (ft-wire (car ins) (cadr ins))))
(vdd (list T))
(vss (list NIL))
(wire (list (car ins)))))))
; de lemmas
(defthmd open-de
(and
(implies
(primp fn)
(equal (de fn ins st netlist)
(de-primp-apply fn ins st)))
(implies
(not (primp fn))
(equal (de fn ins st netlist)
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let* ((md-ins (md-ins module))
(md-st (md-st module))
(md-occs (md-occs module))
(wire-alist (pairlis$ md-ins ins))
(st-alist (pairlis$ md-st st))
(new-netlist (delete-to-eq fn netlist)))
(assoc-eq-values
md-st
(de-occ md-occs
(se-occ md-occs wire-alist st-alist new-netlist)
st-alist
new-netlist)))))))))
(defun de-occ-induct (occs wire-alist st-alist netlist)
(declare (xargs :guard (and (symbol-alistp wire-alist)
;; Using :guard to make formals relevant.
(symbol-alistp st-alist)
(symbol-alistp netlist))
:verify-guards nil))
(if (atom occs)
st-alist
(let* ((occ (car occs))
(occ-name (occ-name occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st (assoc-eq-value occ-name st-alist))
(new-st-alist
(update-alist occ-name
(de occ-fn ins st netlist)
st-alist)))
(de-occ-induct (cdr occs) wire-alist new-st-alist netlist))))
(encapsulate
()
(local
(defthm symbol-alistp-fact-cons
(implies (and (symbolp sym)
(symbol-alistp sym-alist))
(symbol-alistp (cons (cons sym anything)
sym-alist)))))
(local
(defthm symbol-alistp-fact-cons-one-pair
(implies (and (symbol-alistp wire-alist)
(consp (double-rewrite occs))
(occs-syntax-okp occs))
(symbol-alistp (cons (cons (car (car occs)) anything)
wire-alist)))
:hints (("Goal"
:in-theory (enable occ-name)))))
(defthm symbol-alistp-de-occ
(implies (and (symbol-alistp wire-alist)
(symbol-alistp st-alist)
(occs-syntax-okp occs))
(and (alistp (de-occ occs wire-alist st-alist netlist))
(symbol-alistp (de-occ occs wire-alist st-alist netlist))))
:hints
(("Goal"
:induct (de-occ-induct occs wire-alist st-alist netlist)
:expand (occs-syntax-okp occs)
:in-theory (e/d (occ-name)
(occ-outs symbol-alistp
occ-syntax-okp occs-syntax-okp))))))
(defthm update-alist-of-not-a-key
(implies (and (alistp alist)
(not (consp (assoc key alist))))
(equal (update-alist key val alist)
alist))
:hints (("Goal" :in-theory (enable update-alist))))
(verify-guards de
:hints (("Goal" :in-theory (enable occ-name assoc-eq-value))
("Subgoal 2" :use net-syntax-okp->module-syntax-okp)))
(make-event
`(progn
,@(primitives-lemmas-gen
'de
'((ff (list (f-if (car ins) (cadr ins) (car st))))
(latch (list (f-if (car ins) (cadr ins) (car st))))
(link-cntl (list (f-sr (car ins) (cadr ins) (car st))))))))
;; ======================================================================
;; SE-OCC-BINDINGS and DE-OCC-BINDINGS are two shorthand ways of generating the
;; binding lists when doing proofs about the bodies of modules.
(defun se-occ-bindings (n body bindings state-bindings netlist)
(if (zp n)
bindings
(b* ((occurrence (car body))
(occ-name (occ-name occurrence))
(outputs (occ-outs occurrence))
(fn (occ-fn occurrence))
(inputs (occ-ins occurrence)))
(se-occ-bindings
(1- n)
(cdr body)
(append (pairlis$ outputs
(se fn
(assoc-eq-values inputs bindings)
(assoc-eq-value occ-name state-bindings)
netlist))
bindings)
state-bindings
netlist))))
(defthm open-se-occ-bindings
(and
(implies (zp n)
(equal (se-occ-bindings n body bindings state-bindings netlist)
bindings))
(implies (not (zp n))
(equal (se-occ-bindings n body bindings state-bindings netlist)
(b* ((occurrence (car body))
(occ-name (occ-name occurrence))
(outputs (occ-outs occurrence))
(fn (occ-fn occurrence))
(inputs (occ-ins occurrence)))
(se-occ-bindings
(1- n)
(cdr body)
(append (pairlis$ outputs
(se fn
(assoc-eq-values inputs
bindings)
(assoc-eq-value occ-name
state-bindings)
netlist))
bindings)
state-bindings
netlist))))))
(in-theory (disable se-occ-bindings))
(defun de-occ-bindings (n occs wire-alist st-alist netlist)
(if (zp n)
st-alist
(b* ((occ (car occs))
(occ-name (occ-name occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st (assoc-eq-value occ-name st-alist))
(new-st-alist
(update-alist occ-name
(de occ-fn ins st netlist)
st-alist)))
(de-occ-bindings
(1- n)
(cdr occs)
wire-alist
new-st-alist
netlist))))
(defthm open-de-occ-bindings
(and
(implies (zp n)
(equal (de-occ-bindings n occs wire-alist st-alist netlist)
st-alist))
(implies (not (zp n))
(equal (de-occ-bindings n occs wire-alist st-alist netlist)
(b* ((occ (car occs))
(occ-name (occ-name occ))
(occ-fn (occ-fn occ))
(occ-ins (occ-ins occ))
(ins (assoc-eq-values occ-ins wire-alist))
(st (assoc-eq-value occ-name st-alist))
(new-st-alist
(update-alist occ-name
(de occ-fn ins st netlist)
st-alist)))
(de-occ-bindings
(1- n)
(cdr occs)
wire-alist
new-st-alist
netlist))))))
(in-theory (disable de-occ-bindings))
;; ======================================================================
(defthm len-de
(implies (se-guard fn ins st netlist)
(equal (len (de fn ins st netlist))
(if (primp fn)
(len-de-primp-apply fn ins st)
(if (assoc-eq fn netlist)
(len (md-st (assoc-eq fn netlist)))
0))))
:hints
(("Goal"
:do-not-induct t
:expand (de fn ins st netlist))))
(defthm st-okp-de-primp-apply
(implies (and (primp fn)
(se-guard fn ins st netlist))
(st-okp fn (de-primp-apply fn ins st) netlist))
:hints
(("Goal" :in-theory (enable de-primp-apply primp-st primp))))
(defthm se-guard-de-primp-apply
(implies (and (primp fn)
(se-guard fn ins st netlist))
(se-guard fn ins (de-primp-apply fn ins st) netlist))
:hints
(("Goal" :in-theory (enable de-primp-apply primp-st primp))))
(defthm assoc-eq-value-de-occ
(implies (not (member name (strip-cars occs)))
(equal (assoc-eq-value name
(de-occ occs
wire-alist
st-alist
netlist))
(assoc-eq-value name st-alist)))
:hints (("Goal"
:in-theory (enable occ-name)
:induct (de-occ-induct occs wire-alist st-alist netlist))))
(defthm de-occ-update-alist
(implies (and (not (member name (strip-cars occs)))
(not (member nil (strip-cars occs))))
(equal (de-occ occs
wire-alist
(update-alist name st st-alist)
netlist)
(update-alist name st
(de-occ occs wire-alist st-alist netlist))))
:hints (("Goal"
:in-theory (enable occ-name)
:induct (de-occ-induct occs wire-alist st-alist netlist))))
(defthm assoc-eq-value-de-occ-update-alist-same-name
(implies (and (not (member name (strip-cars occs)))
(consp (assoc-eq name st-alist)))
(equal (assoc-eq-value name
(de-occ occs
wire-alist
(update-alist name st
st-alist)
netlist))
st)))
(defthm assoc-eq-value-de-occ-update-alist-diff-names
(implies (and (not (equal name1 name2))
(not (member name2 (strip-cars occs)))
(not (member nil (strip-cars occs))))
(equal (assoc-eq-value name1
(de-occ occs
wire-alist
(update-alist name2 st
st-alist)
netlist))
(assoc-eq-value name1
(de-occ occs
wire-alist
st-alist
netlist)))))
(defthm assoc-eq-values-de-occ-update-alist
(implies (and (not (member name names))
(not (member name (strip-cars occs)))
(not (member nil (strip-cars occs))))
(equal (assoc-eq-values names
(de-occ occs
wire-alist
(update-alist name st st-alist)
netlist))
(assoc-eq-values names
(de-occ occs
wire-alist
st-alist
netlist)))))
(in-theory (disable de-occ-update-alist))
(defthm strip-cars-de-occ
;; de-occ preserves the state's structure.
(equal (strip-cars (de-occ occs wire-alist st-alist netlist))
(strip-cars st-alist))
:hints (("Goal"
:induct (de-occ-induct occs wire-alist st-alist netlist))))
(make-flag flag-de ; flag function name
de ; any member of the clique
;; optional arguments:
:flag-mapping ((de term)
(de-occ list))
:defthm-macro-name defthm-de
:flag-var flag)
(local
(defthm alistp-symbol-listp-symbol-alistp-are-true-listp
(implies (or (alistp lst)
(symbol-listp lst)
(symbol-alistp lst))
(true-listp lst))))
(defun well-formed-st (fn st netlist)
(declare (xargs :guard t))
(and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-okp-guard fn st)
(st-okp fn st netlist)))
(defthm se-guard=>well-formed-st
(implies (se-guard fn ins st netlist)
(well-formed-st fn st netlist))
:rule-classes :forward-chaining)
(defun well-formed-st-occs (occs st-alist netlist)
(declare (xargs :guard t))
(and (net-syntax-okp netlist)
(net-arity-okp netlist)
(st-occs-okp-guard occs st-alist netlist)
(st-occs-okp occs st-alist netlist)))
(defthm se-occ-guard=>well-formed-st-occs
(implies (se-occ-guard occs wire-alist st-alist netlist)
(well-formed-st-occs occs st-alist netlist))
:rule-classes :forward-chaining)
(local
(defthm well-formed-st-de<->well-formed-st-occs-de-occ-aux
(IMPLIES (AND (PRIMP FN)
(SYMBOLP FN)
(TRUE-LISTP ST)
(EQUAL (PRIMP-ST FN) (LEN ST))
(NOT (EQUAL FN 'FF))
(NOT (EQUAL FN 'LATCH))
(NOT (EQUAL FN 'LINK-CNTL)))
(EQUAL (LEN ST) 0))
:hints (("Goal" :in-theory (enable primp)))))
(defthm well-formed-st-de<->well-formed-st-occs-de-occ
(if (equal flag 'term)
(implies (well-formed-st fn st netlist)
(well-formed-st fn (de fn ins st netlist) netlist))
(implies (well-formed-st-occs occs st-alist netlist)
(well-formed-st-occs occs
(de-occ occs wire-alist st-alist netlist)
netlist)))
:hints (("Goal"
:in-theory (enable occ-name)
:induct (flag-de flag
fn ins st
occs wire-alist st-alist
netlist))
("Subgoal *1/4"
:cases ((consp (assoc (car (car occs)) st-alist))
(not (consp (assoc (car (car occs)) st-alist)))))
("Subgoal *1/2"
:use net-syntax-okp->module-syntax-okp))
:rule-classes nil)
(defthm well-formed-st-de
(implies (well-formed-st fn st netlist)
(well-formed-st fn (de fn ins st netlist) netlist))
:hints (("Goal"
:by (:instance well-formed-st-de<->well-formed-st-occs-de-occ
(flag 'term))))
:rule-classes (:rewrite :type-prescription))
(defthm well-formed-st-occs-de-occ
(implies (well-formed-st-occs occs st-alist netlist)
(well-formed-st-occs occs
(de-occ occs wire-alist st-alist netlist)
netlist))
:hints (("Goal"
:by (:instance well-formed-st-de<->well-formed-st-occs-de-occ
(flag 'list))))
:rule-classes (:rewrite :type-prescription))
(in-theory (disable se de))
;; ======================================================================
;; Simulation functions
(defun de-sim-guard (fn inputs-seq netlist)
(declare (xargs :guard (net-syntax-okp netlist)))
(if (atom inputs-seq)
t
(and (se-ins-guard fn (car inputs-seq) netlist)
(de-sim-guard fn (cdr inputs-seq) netlist))))
(defun de-sim (fn inputs-seq st netlist)
(declare (xargs :guard (and (well-formed-st fn st netlist)
(de-sim-guard fn inputs-seq netlist))
:verify-guards nil))
(if (atom inputs-seq)
st
(de-sim fn
(cdr inputs-seq)
(de fn (car inputs-seq) st netlist)
netlist)))
(defthm open-de-sim-atom
(implies (atom inputs-seq)
(equal (de-sim fn inputs-seq st netlist)
st)))
(defthm open-de-sim
(implies (consp inputs-seq)
(equal (de-sim fn inputs-seq st netlist)
(de-sim fn (cdr inputs-seq)
(de fn (car inputs-seq) st netlist)
netlist))))
(in-theory (disable de-sim))
(defun de-sim-trace (fn inputs-seq st netlist)
(declare (xargs :guard (and (well-formed-st fn st netlist)
(de-sim-guard fn inputs-seq netlist))
:verify-guards nil))
(if (atom inputs-seq)
(list st)
(cons st
(de-sim-trace fn
(cdr inputs-seq)
(de fn (car inputs-seq) st netlist)
netlist))))
(defun simulate (fn inputs-seq st netlist)
(declare (xargs :guard (and (well-formed-st fn st netlist)
(de-sim-guard fn inputs-seq netlist))
:verify-guards nil))
(if (atom inputs-seq)
nil
(let ((value (se fn (car inputs-seq) st netlist))
(new-st (de fn (car inputs-seq) st netlist)))
(cons (list value new-st)
(simulate fn (cdr inputs-seq) new-st netlist)))))
(defun de-n (fn inputs-seq st netlist n)
(declare (xargs :guard (and (well-formed-st fn st netlist)
(de-sim-guard fn inputs-seq netlist)
(equal (len inputs-seq) n)
(natp n))
:verify-guards nil))
(if (zp n)
st
(de-n fn
(cdr inputs-seq)
(de fn (car inputs-seq) st netlist)
netlist
(1- n))))
(defthm de-plus
(implies (and (natp m)
(natp n))
(equal (de-n fn inputs-seq st netlist (+ m n))
(de-n fn
(nthcdr m inputs-seq)
(de-n fn inputs-seq st netlist m)
netlist
n)))
:hints (("Goal"
:induct (de-n fn inputs-seq st netlist m))))
(defthm open-de-n-zp
(implies (zp n)
(equal (de-n fn inputs-seq st netlist n)
st)))
(defthm open-de-n
(implies (not (zp n))
(equal (de-n fn inputs-seq st netlist n)
(de-n fn
(cdr inputs-seq)
(de fn (car inputs-seq) st netlist)
netlist
(1- n)))))
(in-theory (disable de-n))
(verify-guards de-sim
:hints (("Goal" :in-theory (disable de st-okp))))
(verify-guards de-sim-trace
:hints (("Goal" :in-theory (disable de st-okp))))
(verify-guards simulate
:hints (("Goal" :in-theory (disable se de st-okp))))
(verify-guards de-n
:hints (("Goal" :in-theory (disable de st-okp))))
(in-theory (disable se-guard se-occ-guard
well-formed-st well-formed-st-occs))
;; ======================================================================
;; Defining a theory for proving value and state lemmas
(deftheory de-rules
'(open-nth
len-1-true-listp=>true-listp
nthcdr-of-pos-const-idx
md-name md-ins md-outs md-st md-occs
occ-name occ-outs occ-fn occ-ins
take-of-len-free))
;; The following theory should be disabled in order to speed up proof times
;; when proving the value and state lemmas of DE modules.
(deftheory de-module-disabled-rules
'((si)
(sis)
default-car
default-cdr
delete-to-eq
f-gates=b-gates
no-duplicatesp-eq
nth
nthcdr
nthcdr-of-nthcdr
prefixp-of-cons-left
prefixp-when-equal-lengths
str::iprefixp-of-cons-left
str::istrprefixp$inline
str::iprefixp-when-prefixp
take
take-of-take-split
take-of-too-many
v-threefix))
|