1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
(in-package "ADE")
(include-book "../link-joint")
(include-book "../vector-module")
(local (in-theory (disable nth)))
;; ======================================================================
;;; Table of Contents:
;;;
;;; 1. DE Module Generator of ALT-BRANCH
;;; 2. Specify and Prove a State Invariant
;; ======================================================================
;; 1. DE Module Generator of ALT-BRANCH
;;
;; Construct a DE module generator for an alternate branch, ALT-BRANCH, using
;; the link-joint model. Prove the value and state lemmas for this module
;; generator.
(defconst *alt-branch$go-num* 2)
(defun alt-branch$data-ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ 3 (mbe :logic (nfix data-size)
:exec data-size)))
(defun alt-branch$ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ (alt-branch$data-ins-len data-size)
*alt-branch$go-num*))
;; DE module generator of ALT-BRANCH
(module-generator
alt-branch* (data-size)
(si 'alt-branch data-size)
(list* 'full-in 'empty-out0- 'empty-out1-
(append (sis 'data-in 0 data-size)
(sis 'go 0 *alt-branch$go-num*)))
(list* 'act 'act0 'act1
(sis 'data-out 0 data-size))
'(select select-buf)
(list
;; LINKS
;; Select
'(select (select-status select-out)
link1
(buf-act act select-in))
;; Select-buf
'(select-buf (select-buf-status select-buf-out)
link1
(act buf-act select-buf-in))
;; JOINTS
;; Alt-Branch
'(g0 (select-out~) b-not (select-out))
'(g1 (m-full-in) b-and (full-in select-status))
'(g2 (m-empty-out0-) b-or3 (empty-out0- select-buf-status select-out))
'(g3 (m-empty-out1-) b-or3 (empty-out1- select-buf-status select-out~))
(list 'alt-branch-cntl0
'(act0)
'joint-cntl
(list 'm-full-in 'm-empty-out0- (si 'go 0)))
(list 'alt-branch-cntl1
'(act1)
'joint-cntl
(list 'm-full-in 'm-empty-out1- (si 'go 0)))
'(alt-branch-cntl (act) b-or (act0 act1))
(list 'alt-branch-op0
(sis 'data-out 0 data-size)
(si 'v-buf data-size)
(sis 'data-in 0 data-size))
'(alt-branch-op1 (select-buf-in) b-not (select-out))
;; Buffer
(list 'buf-cntl
'(buf-act)
'joint-cntl
(list 'select-buf-status 'select-status (si 'go 1)))
'(buf-op (select-in) b-buf (select-buf-out)))
(declare (xargs :guard (natp data-size))))
(make-event
`(progn
,@(state-accessors-gen 'alt-branch '(select select-buf) 0)))
;; DE netlist generator. A generated netlist will contain an instance of
;; ALT-BRANCH.
(defund alt-branch$netlist (data-size)
(declare (xargs :guard (natp data-size)))
(cons (alt-branch* data-size)
(union$ (link1$netlist)
*joint-cntl*
(v-buf$netlist data-size)
:test 'equal)))
;; Recognizer for ALT-BRANCH
(defund alt-branch& (netlist data-size)
(declare (xargs :guard (and (alistp netlist)
(natp data-size))))
(b* ((subnetlist (delete-to-eq (si 'alt-branch data-size) netlist)))
(and (equal (assoc (si 'alt-branch data-size) netlist)
(alt-branch* data-size))
(link1& subnetlist)
(joint-cntl& subnetlist)
(v-buf& subnetlist data-size))))
;; Sanity check
(local
(defthmd check-alt-branch$netlist-64
(and (net-syntax-okp (alt-branch$netlist 64))
(net-arity-okp (alt-branch$netlist 64))
(alt-branch& (alt-branch$netlist 64) 64))))
;; Constraints on the state of ALT-BRANCH
(defund alt-branch$valid-st (st)
(b* ((select (nth *alt-branch$select* st))
(select-buf (nth *alt-branch$select-buf* st)))
(and (link1$valid-st select)
(link1$valid-st select-buf))))
;; Extract the input and output signals for ALT-BRANCH
(progn
;; Extract the input data
(defun alt-branch$data-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(take (mbe :logic (nfix data-size)
:exec data-size)
(nthcdr 3 inputs)))
(defthm len-alt-branch$data-in
(equal (len (alt-branch$data-in inputs data-size))
(nfix data-size)))
(in-theory (disable alt-branch$data-in))
;; Extract the "act0" signal
(defund alt-branch$act0 (inputs st data-size)
(b* ((full-in (nth 0 inputs))
(empty-out0- (nth 1 inputs))
(go-signals (nthcdr (alt-branch$data-ins-len data-size) inputs))
(go-alt-branch (nth 0 go-signals))
(select (nth *alt-branch$select* st))
(select.s (nth *link1$s* select))
(select.d (nth *link1$d* select))
(select-buf (nth *alt-branch$select-buf* st))
(select-buf.s (nth *link1$s* select-buf))
(m-full-in (f-and full-in (car select.s)))
(m-empty-out0- (f-or3 empty-out0- (car select-buf.s) (car select.d))))
(joint-act m-full-in m-empty-out0- go-alt-branch)))
(defthm alt-branch$act0-inactive
(implies (or (not (nth 0 inputs))
(equal (nth 1 inputs) t))
(not (alt-branch$act0 inputs st data-size)))
:hints (("Goal" :in-theory (enable f-or3 alt-branch$act0))))
;; Extract the "act1" signal
(defund alt-branch$act1 (inputs st data-size)
(b* ((full-in (nth 0 inputs))
(empty-out1- (nth 2 inputs))
(go-signals (nthcdr (alt-branch$data-ins-len data-size) inputs))
(go-alt-branch (nth 0 go-signals))
(select (nth *alt-branch$select* st))
(select.s (nth *link1$s* select))
(select.d (nth *link1$d* select))
(select-buf (nth *alt-branch$select-buf* st))
(select-buf.s (nth *link1$s* select-buf))
(m-full-in (f-and full-in (car select.s)))
(m-empty-out1- (f-or3 empty-out1-
(car select-buf.s)
(f-not (car select.d)))))
(joint-act m-full-in m-empty-out1- go-alt-branch)))
(defthm alt-branch$act1-inactive
(implies (or (not (nth 0 inputs))
(equal (nth 2 inputs) t))
(not (alt-branch$act1 inputs st data-size)))
:hints (("Goal" :in-theory (enable f-or3 alt-branch$act1))))
;; Extract the "act" signal
(defund alt-branch$act (inputs st data-size)
(f-or (alt-branch$act0 inputs st data-size)
(alt-branch$act1 inputs st data-size)))
(defthm alt-branch$act-inactive
(implies (or (not (nth 0 inputs))
(and (equal (nth 1 inputs) t)
(equal (nth 2 inputs) t)))
(not (alt-branch$act inputs st data-size)))
:hints (("Goal" :in-theory (enable alt-branch$act))))
)
;; The value lemma for ALT-BRANCH
(defthm alt-branch$value
(b* ((inputs (list* full-in empty-out0- empty-out1-
(append data-in go-signals))))
(implies (and (alt-branch& netlist data-size)
(true-listp data-in)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *alt-branch$go-num*))
(equal (se (si 'alt-branch data-size) inputs st netlist)
(list* (alt-branch$act inputs st data-size)
(alt-branch$act0 inputs st data-size)
(alt-branch$act1 inputs st data-size)
(v-threefix data-in)))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(se (si 'alt-branch data-size) inputs st netlist))
:in-theory (e/d (de-rules
alt-branch&
alt-branch*$destructure
alt-branch$act
alt-branch$act0
alt-branch$act1)
(de-module-disabled-rules)))))
;; This function specifies the next state of ALT-BRANCH.
(defun alt-branch$step (inputs st data-size)
(b* ((go-signals (nthcdr (alt-branch$data-ins-len data-size) inputs))
(go-buf (nth 1 go-signals))
(select (nth *alt-branch$select* st))
(select.s (nth *link1$s* select))
(select.d (nth *link1$d* select))
(select-buf (nth *alt-branch$select-buf* st))
(select-buf.s (nth *link1$s* select-buf))
(select-buf.d (nth *link1$d* select-buf))
(act (alt-branch$act inputs st data-size))
(buf-act (joint-act (car select-buf.s) (car select.s) go-buf))
(select-inputs (list buf-act act (car select-buf.d)))
(select-buf-inputs (list act buf-act (f-not (car select.d)))))
(list
;; Select
(link1$step select-inputs select)
;; Select-buf
(link1$step select-buf-inputs select-buf))))
;; The state lemma for ALT-BRANCH
(defthm alt-branch$state
(b* ((inputs (list* full-in empty-out0- empty-out1-
(append data-in go-signals))))
(implies (and (alt-branch& netlist data-size)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *alt-branch$go-num*))
(equal (de (si 'alt-branch data-size) inputs st netlist)
(alt-branch$step inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(de (si 'alt-branch data-size) inputs st netlist))
:in-theory (e/d (de-rules
alt-branch&
alt-branch*$destructure
alt-branch$act
alt-branch$act0
alt-branch$act1)
(de-module-disabled-rules)))))
(in-theory (disable alt-branch$step))
;; ======================================================================
;; 2. Specify and Prove a State Invariant
;; Conditions on the inputs
(defund alt-branch$input-format (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((full-in (nth 0 inputs))
(empty-out0- (nth 1 inputs))
(empty-out1- (nth 2 inputs))
(data-in (alt-branch$data-in inputs data-size))
(go-signals (nthcdr (alt-branch$data-ins-len data-size) inputs)))
(and
(booleanp full-in)
(booleanp empty-out0-)
(booleanp empty-out1-)
(or (not full-in) (bvp data-in))
(true-listp go-signals)
(= (len go-signals) *alt-branch$go-num*)
(equal inputs
(list* full-in empty-out0- empty-out1-
(append data-in go-signals))))))
(defthm booleanp-alt-branch$act0
(implies (and (alt-branch$input-format inputs data-size)
(alt-branch$valid-st st))
(booleanp (alt-branch$act0 inputs st data-size)))
:hints (("Goal" :in-theory (enable alt-branch$input-format
alt-branch$valid-st
alt-branch$act0)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-alt-branch$act1
(implies (and (alt-branch$input-format inputs data-size)
(alt-branch$valid-st st))
(booleanp (alt-branch$act1 inputs st data-size)))
:hints (("Goal" :in-theory (enable alt-branch$input-format
alt-branch$valid-st
alt-branch$act1)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-alt-branch$act
(implies (and (alt-branch$input-format inputs data-size)
(alt-branch$valid-st st))
(booleanp (alt-branch$act inputs st data-size)))
:hints (("Goal" :in-theory (enable alt-branch$act)))
:rule-classes (:rewrite :type-prescription))
(defthm alt-branch$valid-st-preserved
(implies (and (alt-branch$input-format inputs data-size)
(alt-branch$valid-st st))
(alt-branch$valid-st
(alt-branch$step inputs st data-size)))
:hints (("Goal"
:in-theory (e/d (f-sr
alt-branch$input-format
alt-branch$valid-st
alt-branch$step
alt-branch$act
alt-branch$act0
alt-branch$act1)
()))))
;; A state invariant
(defund alt-branch$inv (st)
(b* ((select (nth *alt-branch$select* st))
(select.s (nth *link1$s* select))
(select-buf (nth *alt-branch$select-buf* st))
(select-buf.s (nth *link1$s* select-buf)))
(not (equal select.s select-buf.s))))
(defthm alt-branch$inv-preserved
(implies (and (alt-branch$input-format inputs data-size)
(alt-branch$valid-st st)
(alt-branch$inv st))
(alt-branch$inv (alt-branch$step inputs st data-size)))
:hints (("Goal"
:in-theory (e/d (f-sr
alt-branch$input-format
alt-branch$valid-st
alt-branch$inv
alt-branch$step
alt-branch$act
alt-branch$act0
alt-branch$act1)
()))))
|