File: comp-v-or.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (859 lines) | stat: -rw-r--r-- 30,460 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "queue2")
(include-book "queue3")

(local (include-book "arithmetic-3/top" :dir :system))

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of COMP-V-OR
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of COMP-V-OR
;;
;; Construct a DE module generator for COMP-V-OR using the link-joint model.
;; Prove the value and state lemmas for this module generator.  COMP-V-OR
;; computes the bitwise OR on the two input operands.

(defconst *comp-v-or$prim-go-num* 2)
(defconst *comp-v-or$go-num* (+ *comp-v-or$prim-go-num*
                                *queue2$go-num*
                                *queue3$go-num*))

(defun comp-v-or$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (* 2 (mbe :logic (nfix data-size)
                 :exec  data-size))))

(defun comp-v-or$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (comp-v-or$data-ins-len data-size)
     *comp-v-or$go-num*))

;; DE module generator of COMP-V-OR

(module-generator
 comp-v-or* (data-size)
 (si 'comp-v-or data-size)
 (list* 'full-in 'empty-out-
        (append (sis 'a 0 data-size)
                (sis 'b 0 data-size)
                (sis 'go 0 *comp-v-or$go-num*)))
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 '(a0 b0 a1 b1 q2 q3)
 (list
  ;; LINKS
  ;; A0
  (list 'a0
        (list* 'a0-status (sis 'a0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'q2-in-act (sis 'a0-in 0 data-size)))

  ;; B0
  (list 'b0
        (list* 'b0-status (sis 'b0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'q3-in-act (sis 'b0-in 0 data-size)))

  ;; A1
  (list 'a1
        (list* 'a1-status (sis 'a1-out 0 data-size))
        (si 'link data-size)
        (list* 'q2-out-act 'out-act (sis 'q2-data-out 0 data-size)))

  ;; B1
  (list 'b1
        (list* 'b1-status (sis 'b1-out 0 data-size))
        (si 'link data-size)
        (list* 'q3-out-act 'out-act (sis 'q3-data-out 0 data-size)))

  ;; STATUS
  '(in-status (ready-in-) b-or (a0-status b0-status))
  '(out-status (ready-out) b-and (a1-status b1-status))

  ;; JOINTS
  ;; 2-link queue Q2
  (list 'q2
        (list* 'q2-in-act 'q2-out-act
               (sis 'q2-data-out 0 data-size))
        (si 'queue2 data-size)
        (list* 'a0-status 'a1-status
               (append (sis 'a0-out 0 data-size)
                       (sis 'go
                            *comp-v-or$prim-go-num*
                            *queue2$go-num*))))

  ;; 3-link queue Q3
  (list 'q3
        (list* 'q3-in-act 'q3-out-act
               (sis 'q3-data-out 0 data-size))
        (si 'queue3 data-size)
        (list* 'b0-status 'b1-status
               (append (sis 'b0-out 0 data-size)
                       (sis 'go
                            (+ *comp-v-or$prim-go-num*
                               *queue2$go-num*)
                            *queue3$go-num*))))

  ;; In
  (list 'in-cntl
        '(in-act)
        'joint-cntl
        (list 'full-in 'ready-in- (si 'go 0)))
  (list 'in-op0
        (sis 'a0-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'a 0 data-size))
  (list 'in-op1
        (sis 'b0-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'b 0 data-size))

  ;; Out
  (list 'out-cntl
        '(out-act)
        'joint-cntl
        (list 'ready-out 'empty-out- (si 'go 1)))
  (list 'out-op
        (sis 'data-out 0 data-size)
        (si 'v-or data-size)
        (append (sis 'a1-out 0 data-size)
                (sis 'b1-out 0 data-size))))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'comp-v-or '(a0 b0 a1 b1 q2 q3) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of
;; COMP-V-OR.

(defund comp-v-or$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (comp-v-or* data-size)
        (union$ (queue2$netlist data-size)
                (queue3$netlist data-size)
                (v-or$netlist data-size)
                :test 'equal)))

;; Recognizer for COMP-V-OR

(defund comp-v-or& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'comp-v-or data-size) netlist)))
    (and (equal (assoc (si 'comp-v-or data-size) netlist)
                (comp-v-or* data-size))
         (link& subnetlist data-size)
         (joint-cntl& subnetlist)
         (v-buf& subnetlist data-size)
         (v-or& subnetlist data-size)
         (queue2& subnetlist data-size)
         (queue3& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-comp-v-or$netlist-64
   (and (net-syntax-okp (comp-v-or$netlist 64))
        (net-arity-okp (comp-v-or$netlist 64))
        (comp-v-or& (comp-v-or$netlist 64) 64))))

;; Constraints on the state of COMP-V-OR

(defund comp-v-or$st-format (st data-size)
  (b* ((a0 (nth *comp-v-or$a0* st))
       (b0 (nth *comp-v-or$b0* st))
       (a1 (nth *comp-v-or$a1* st))
       (b1 (nth *comp-v-or$b1* st))
       (q2 (nth *comp-v-or$q2* st))
       (q3 (nth *comp-v-or$q3* st)))
    (and (link$st-format a0 data-size)
         (link$st-format b0 data-size)
         (link$st-format a1 data-size)
         (link$st-format b1 data-size)

         (queue2$st-format q2 data-size)
         (queue3$st-format q3 data-size))))

(defthm comp-v-or$st-format=>constraint
  (implies (comp-v-or$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable comp-v-or$st-format)))
  :rule-classes :forward-chaining)

(defund comp-v-or$valid-st (st data-size)
  (b* ((a0 (nth *comp-v-or$a0* st))
       (b0 (nth *comp-v-or$b0* st))
       (a1 (nth *comp-v-or$a1* st))
       (b1 (nth *comp-v-or$b1* st))
       (q2 (nth *comp-v-or$q2* st))
       (q3 (nth *comp-v-or$q3* st)))
    (and (link$valid-st a0 data-size)
         (link$valid-st b0 data-size)
         (link$valid-st a1 data-size)
         (link$valid-st b1 data-size)

         (queue2$valid-st q2 data-size)
         (queue3$valid-st q3 data-size))))

(defthmd comp-v-or$valid-st=>constraint
  (implies (comp-v-or$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable comp-v-or$valid-st)))
  :rule-classes :forward-chaining)

(defthmd comp-v-or$valid-st=>st-format
  (implies (comp-v-or$valid-st st data-size)
           (comp-v-or$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue2$valid-st=>st-format
                                   queue3$valid-st=>st-format
                                   comp-v-or$st-format
                                   comp-v-or$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for COMP-V-OR

(progn
  ;; Extract the input operand A

  (defun comp-v-or$a (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-comp-v-or$a
    (equal (len (comp-v-or$a inputs data-size))
           (nfix data-size)))

  (in-theory (disable comp-v-or$a))

  ;; Extract the input operand B

  (defun comp-v-or$b (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (b* ((size (mbe :logic (nfix data-size)
                     :exec  data-size)))
      (take size
            (nthcdr (+ 2 size) inputs))))

  (defthm len-comp-v-or$b
    (equal (len (comp-v-or$b inputs data-size))
           (nfix data-size)))

  (in-theory (disable comp-v-or$b))

  ;; Extract the inputs for joint Q2

  (defund comp-v-or$q2-inputs (inputs st data-size)
    (b* ((go-signals (nthcdr (comp-v-or$data-ins-len data-size) inputs))

         (q2-go-signals (take *queue2$go-num*
                              (nthcdr *comp-v-or$prim-go-num*
                                      go-signals)))

         (a0  (nth *comp-v-or$a0* st))
         (a0.s (nth *link$s* a0))
         (a0.d (nth *link$d* a0))
         (a1 (nth *comp-v-or$a1* st))
         (a1.s (nth *link$s* a1)))

      (list* (f-buf (car a0.s)) (f-buf (car a1.s))
             (append (v-threefix (strip-cars a0.d))
                     q2-go-signals))))

  ;; Extract the inputs for joint Q3

  (defund comp-v-or$q3-inputs (inputs st data-size)
    (b* ((go-signals (nthcdr (comp-v-or$data-ins-len data-size) inputs))

         (q3-go-signals (take *queue3$go-num*
                              (nthcdr (+ *comp-v-or$prim-go-num*
                                         *queue2$go-num*)
                                      go-signals)))

         (b0  (nth *comp-v-or$b0* st))
         (b0.s (nth *link$s* b0))
         (b0.d (nth *link$d* b0))
         (b1 (nth *comp-v-or$b1* st))
         (b1.s (nth *link$s* b1)))

      (list* (f-buf (car b0.s)) (f-buf (car b1.s))
             (append (v-threefix (strip-cars b0.d))
                     q3-go-signals))))

  ;; Extract the "in-act" signal

  (defund comp-v-or$in-act (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (go-signals (nthcdr (comp-v-or$data-ins-len data-size) inputs))
         (go-in (nth 0 go-signals))
         (a0 (nth *comp-v-or$a0* st))
         (a0.s (nth *link$s* a0))
         (b0 (nth *comp-v-or$b0* st))
         (b0.s (nth *link$s* b0)))
      (joint-act full-in
                 (f-or (car a0.s) (car b0.s))
                 go-in)))

  (defthm comp-v-or$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (comp-v-or$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable comp-v-or$in-act))))

  ;; Extract the "out-act" signal

  (defund comp-v-or$out-act (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (comp-v-or$data-ins-len data-size) inputs))
         (go-out (nth 1 go-signals))

         (a1 (nth *comp-v-or$a1* st))
         (a1.s (nth *link$s* a1))
         (b1 (nth *comp-v-or$b1* st))
         (b1.s (nth *link$s* b1)))
      (joint-act (f-and (car a1.s) (car b1.s))
                 empty-out-
                 go-out)))

  (defthm comp-v-or$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (comp-v-or$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable comp-v-or$out-act))))

  ;; Extract the output data

  (defund comp-v-or$data-out (st)
    (fv-or (strip-cars (nth *link$d*
                                  (nth *comp-v-or$a1* st)))
           (strip-cars (nth *link$d*
                                  (nth *comp-v-or$b1* st)))))

  (defthm len-comp-v-or$data-out-1
    (implies (comp-v-or$st-format st data-size)
             (equal (len (comp-v-or$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable comp-v-or$st-format
                                       comp-v-or$data-out))))

  (defthm len-comp-v-or$data-out-2
    (implies (comp-v-or$valid-st st data-size)
             (equal (len (comp-v-or$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable comp-v-or$valid-st
                                       comp-v-or$data-out))))

  (defthm bvp-comp-v-or$data-out
    (implies (and (comp-v-or$valid-st st data-size)
                  (comp-v-or$out-act inputs st data-size))
             (bvp (comp-v-or$data-out st)))
    :hints (("Goal" :in-theory (enable comp-v-or$valid-st
                                       comp-v-or$st-format
                                       comp-v-or$out-act
                                       comp-v-or$data-out))))

  (defun comp-v-or$outputs (inputs st data-size)
    (list* (comp-v-or$in-act inputs st data-size)
           (comp-v-or$out-act inputs st data-size)
           (comp-v-or$data-out st)))
  )

;; The value lemma for COMP-V-OR

(defthm comp-v-or$value
  (b* ((inputs (list* full-in empty-out- (append a b go-signals))))
    (implies (and (comp-v-or& netlist data-size)
                  (equal (len a) data-size)
                  (equal (len b) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *comp-v-or$go-num*)
                  (comp-v-or$st-format st data-size))
             (equal (se (si 'comp-v-or data-size) inputs st netlist)
                    (comp-v-or$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'comp-v-or data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            comp-v-or&
                            comp-v-or*$destructure
                            comp-v-or$st-format
                            comp-v-or$in-act
                            comp-v-or$out-act
                            comp-v-or$data-out)
                           (append
                            append-v-threefix
                            de-module-disabled-rules)))))

;; This function specifies the next state of COMP-V-OR.

(defun comp-v-or$step (inputs st data-size)
  (b* ((a (comp-v-or$a inputs data-size))
       (b (comp-v-or$b inputs data-size))

       (a0 (nth *comp-v-or$a0* st))
       (b0 (nth *comp-v-or$b0* st))
       (a1 (nth *comp-v-or$a1* st))
       (b1 (nth *comp-v-or$b1* st))
       (q2 (nth *comp-v-or$q2* st))
       (q3 (nth *comp-v-or$q3* st))

       (q2-inputs (comp-v-or$q2-inputs inputs st data-size))
       (q2-in-act (queue2$in-act q2-inputs q2 data-size))
       (q2-out-act (queue2$out-act q2-inputs q2 data-size))
       (q2-data-out (queue2$data-out q2))

       (q3-inputs (comp-v-or$q3-inputs inputs st data-size))
       (q3-in-act (queue3$in-act q3-inputs q3 data-size))
       (q3-out-act (queue3$out-act q3-inputs q3 data-size))
       (q3-data-out (queue3$data-out q3))

       (in-act (comp-v-or$in-act inputs st data-size))
       (out-act (comp-v-or$out-act inputs st data-size))

       (a0-inputs (list* in-act q2-in-act a))
       (b0-inputs (list* in-act q3-in-act b))
       (a1-inputs (list* q2-out-act out-act q2-data-out))
       (b1-inputs (list* q3-out-act out-act q3-data-out)))

    (list
     ;; A0
     (link$step a0-inputs a0 data-size)
     ;; B0
     (link$step b0-inputs b0 data-size)
     ;; A1
     (link$step a1-inputs a1 data-size)
     ;; B1
     (link$step b1-inputs b1 data-size)

     ;; Joint Q2
     (queue2$step q2-inputs q2 data-size)
     ;; Joint Q3
     (queue3$step q3-inputs q3 data-size))))

;; The state lemma for COMP-V-OR

(defthm comp-v-or$state
  (b* ((inputs (list* full-in empty-out- (append a b go-signals))))
    (implies (and (comp-v-or& netlist data-size)
                  (true-listp a)
                  (equal (len a) data-size)
                  (true-listp b)
                  (equal (len b) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *comp-v-or$go-num*)
                  (comp-v-or$st-format st data-size))
             (equal (de (si 'comp-v-or data-size) inputs st netlist)
                    (comp-v-or$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'comp-v-or data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            comp-v-or&
                            comp-v-or*$destructure
                            comp-v-or$st-format
                            comp-v-or$a
                            comp-v-or$b
                            comp-v-or$in-act
                            comp-v-or$out-act
                            comp-v-or$q2-inputs
                            comp-v-or$q3-inputs)
                           (append
                            de-module-disabled-rules)))))

(in-theory (disable comp-v-or$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund comp-v-or$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (a (comp-v-or$a inputs data-size))
       (b (comp-v-or$b inputs data-size))
       (go-signals (nthcdr (comp-v-or$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp a))
     (or (not full-in) (bvp b))
     (true-listp go-signals)
     (= (len go-signals) *comp-v-or$go-num*)
     (equal inputs
            (list* full-in empty-out- (append a b go-signals))))))

(local
 (defthm comp-v-or$input-format=>q2$input-format
   (implies (and (comp-v-or$input-format inputs data-size)
                 (comp-v-or$valid-st st data-size))
            (queue2$input-format
             (comp-v-or$q2-inputs inputs st data-size)
             data-size))
   :hints (("Goal"
            :in-theory (e/d (comp-v-or$input-format
                             queue2$input-format
                             queue2$data-in
                             comp-v-or$valid-st
                             comp-v-or$q2-inputs)
                            (len
                             take-of-too-many))))))

(local
 (defthm comp-v-or$input-format=>q3$input-format
   (implies (and (comp-v-or$input-format inputs data-size)
                 (comp-v-or$valid-st st data-size))
            (queue3$input-format
             (comp-v-or$q3-inputs inputs st data-size)
             data-size))
   :hints (("Goal"
            :in-theory (e/d (comp-v-or$input-format
                             queue3$input-format
                             queue3$data-in
                             comp-v-or$valid-st
                             comp-v-or$q3-inputs)
                            (len
                             take-of-too-many))))))

(defthm booleanp-comp-v-or$in-act
  (implies (and (comp-v-or$input-format inputs data-size)
                (comp-v-or$valid-st st data-size))
           (booleanp (comp-v-or$in-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable comp-v-or$input-format
                                     comp-v-or$valid-st
                                     comp-v-or$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-comp-v-or$out-act
  (implies (and (comp-v-or$input-format inputs data-size)
                (comp-v-or$valid-st st data-size))
           (booleanp (comp-v-or$out-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable comp-v-or$input-format
                                     comp-v-or$valid-st
                                     comp-v-or$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma comp-v-or)

;; ======================================================================

;; 3. Single-Step-Update Property

;; Specify the functionality of COMP-V-OR over a data sequence

(defun comp-v-or$op-map (x)
  (if (atom x)
      nil
    (cons (v-or (caar x) (cdar x))
          (comp-v-or$op-map (cdr x)))))

(defthm len-of-comp-v-or$op-map
  (equal (len (comp-v-or$op-map x))
         (len x)))

(defthm comp-v-or$op-map-of-append
  (equal (comp-v-or$op-map (append x y))
         (append (comp-v-or$op-map x) (comp-v-or$op-map y))))

;; The extraction function for COMP-V-OR that extracts the future output
;; sequence from the current state.

(defund comp-v-or$extract (st)
  (b* ((a0 (nth *comp-v-or$a0* st))
       (b0 (nth *comp-v-or$b0* st))
       (a1 (nth *comp-v-or$a1* st))
       (b1 (nth *comp-v-or$b1* st))
       (q2 (nth *comp-v-or$q2* st))
       (q3 (nth *comp-v-or$q3* st))

       (a-seq (append (extract-valid-data (list a0))
                      (queue2$extract q2)
                      (extract-valid-data (list a1))))
       (b-seq (append (extract-valid-data (list b0))
                      (queue3$extract q3)
                      (extract-valid-data (list b1)))))
    (comp-v-or$op-map (pairlis$ a-seq b-seq))))

(defthm comp-v-or$extract-not-empty
  (implies (and (comp-v-or$out-act inputs st data-size)
                (comp-v-or$valid-st st data-size))
           (< 0 (len (comp-v-or$extract st))))
  :hints (("Goal"
           :in-theory (e/d (comp-v-or$valid-st
                            comp-v-or$extract
                            comp-v-or$out-act)
                           ())))
  :rule-classes :linear)

;; Specify and prove a state invariant

(progn
  (defund comp-v-or$inv (st)
    (b* ((a0 (nth *comp-v-or$a0* st))
         (b0 (nth *comp-v-or$b0* st))
         (a1 (nth *comp-v-or$a1* st))
         (b1 (nth *comp-v-or$b1* st))
         (q2 (nth *comp-v-or$q2* st))
         (q3 (nth *comp-v-or$q3* st))

         (a-seq (append (extract-valid-data (list a0 a1))
                        (queue2$extract q2)))
         (b-seq (append (extract-valid-data (list b0 b1))
                        (queue3$extract q3))))
      (equal (len a-seq) (len b-seq))))

  (local
   (defthm comp-v-or$q2-in-act-inactive
     (implies (equal (nth *link$s* (nth *comp-v-or$a0* st))
                     '(nil))
              (not (queue2$in-act (comp-v-or$q2-inputs inputs st data-size)
                                  (nth *comp-v-or$q2* st)
                                  data-size)))
     :hints (("Goal"
              :in-theory (enable comp-v-or$q2-inputs)))))

  (local
   (defthm comp-v-or$q3-in-act-inactive
     (implies (equal (nth *link$s* (nth *comp-v-or$b0* st))
                     '(nil))
              (not (queue3$in-act (comp-v-or$q3-inputs inputs st data-size)
                                  (nth *comp-v-or$q3* st)
                                  data-size)))
     :hints (("Goal"
              :in-theory (enable comp-v-or$q3-inputs)))))

  (local
   (defthm comp-v-or$q2-out-act-inactive
     (implies (equal (nth *link$s* (nth *comp-v-or$a1* st))
                     '(t))
              (not (queue2$out-act (comp-v-or$q2-inputs inputs st data-size)
                                   (nth *comp-v-or$q2* st)
                                   data-size)))
     :hints (("Goal"
              :in-theory (enable comp-v-or$q2-inputs)))))

  (local
   (defthm comp-v-or$q3-out-act-inactive
     (implies (equal (nth *link$s* (nth *comp-v-or$b1* st))
                     '(t))
              (not (queue3$out-act (comp-v-or$q3-inputs inputs st data-size)
                                   (nth *comp-v-or$q3* st)
                                   data-size)))
     :hints (("Goal"
              :in-theory (enable comp-v-or$q3-inputs)))))

  (defthm comp-v-or$inv-preserved
    (implies (and (comp-v-or$input-format inputs data-size)
                  (comp-v-or$valid-st st data-size)
                  (comp-v-or$inv st))
             (comp-v-or$inv (comp-v-or$step inputs st data-size)))
    :hints (("Goal"
             :use (comp-v-or$input-format=>q2$input-format
                   comp-v-or$input-format=>q3$input-format)
             :in-theory (e/d (f-sr
                              queue2$extracted-step
                              queue3$extracted-step
                              comp-v-or$valid-st
                              comp-v-or$inv
                              comp-v-or$step
                              comp-v-or$in-act
                              comp-v-or$out-act)
                             (comp-v-or$input-format=>q2$input-format
                              comp-v-or$input-format=>q3$input-format)))))
  )

;; The extracted next-state function for COMP-V-OR.  Note that this function
;; avoids exploring the internal computation of COMP-V-OR.

(defund comp-v-or$extracted-step (inputs st data-size)
  (b* ((a (comp-v-or$a inputs data-size))
       (b (comp-v-or$b inputs data-size))
       (data (v-or a b))
       (extracted-st (comp-v-or$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (comp-v-or$out-act inputs st data-size) t)
      (cond
       ((equal (comp-v-or$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (comp-v-or$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(local
 (defthm comp-v-or$input-format-lemma-1
   (implies (comp-v-or$input-format inputs data-size)
            (booleanp (nth 0 inputs)))
   :hints (("Goal" :in-theory (enable comp-v-or$input-format)))
   :rule-classes (:rewrite :type-prescription)))

(local
 (defthm comp-v-or$input-format-lemma-2
   (implies (comp-v-or$input-format inputs data-size)
            (booleanp (nth 1 inputs)))
   :hints (("Goal" :in-theory (enable comp-v-or$input-format)))
   :rule-classes (:rewrite :type-prescription)))

(local
 (defthm comp-v-or$input-format-lemma-3
   (implies (and (comp-v-or$input-format inputs data-size)
                 (nth 0 inputs))
            (and (bvp (comp-v-or$a inputs data-size))
                 (bvp (comp-v-or$b inputs data-size))))
   :hints (("Goal" :in-theory (enable comp-v-or$input-format)))))

(encapsulate
  ()

  (local
   (defthm comp-v-or$q2-data-in-rewrite
     (b* ((a0 (nth *comp-v-or$a0* st))
          (a0.d (nth *link$d* a0)))
       (implies (and (bvp (strip-cars a0.d))
                     (equal (len a0.d) data-size))
                (equal (queue2$data-in
                        (comp-v-or$q2-inputs inputs st data-size)
                        data-size)
                       (strip-cars a0.d))))
     :hints (("Goal"
              :in-theory (enable queue2$data-in
                                 comp-v-or$q2-inputs)))))

  (local
   (defthm comp-v-or$q3-data-in-rewrite
     (b* ((b0 (nth *comp-v-or$b0* st))
          (b0.d (nth *link$d* b0)))
       (implies (and (bvp (strip-cars b0.d))
                     (equal (len b0.d) data-size))
                (equal (queue3$data-in
                        (comp-v-or$q3-inputs inputs st data-size)
                        data-size)
                       (strip-cars b0.d))))
     :hints (("Goal"
              :in-theory (enable queue3$data-in
                                 comp-v-or$q3-inputs)))))

  (local
   (defthm comp-v-or$extracted-step-correct-aux
     (and (equal (cons e (append (queue2$extract st)
                                 x))
                 (append (cons e (queue2$extract st))
                         x))
          (equal (cons e (append (queue3$extract st)
                                 x))
                 (append (cons e (queue3$extract st))
                         x)))))

  (defthm comp-v-or$extracted-step-correct
    (b* ((next-st (comp-v-or$step inputs st data-size)))
      (implies (and (comp-v-or$input-format inputs data-size)
                    (comp-v-or$valid-st st data-size)
                    (comp-v-or$inv st))
               (equal (comp-v-or$extract next-st)
                      (comp-v-or$extracted-step inputs st data-size))))
    :hints (("Goal"
             :use (comp-v-or$input-format=>q2$input-format
                   comp-v-or$input-format=>q3$input-format)
             :in-theory (e/d (f-sr
                              queue2$extracted-step
                              queue3$extracted-step
                              comp-v-or$extracted-step
                              comp-v-or$valid-st
                              comp-v-or$inv
                              comp-v-or$step
                              comp-v-or$in-act
                              comp-v-or$out-act
                              comp-v-or$extract)
                             (comp-v-or$input-format=>q2$input-format
                              comp-v-or$input-format=>q3$input-format
                              strip-cars
                              acl2::append-of-cons)))))
  )

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that comp-v-or$valid-st is an invariant.

(defthm comp-v-or$valid-st-preserved
  (implies (and (comp-v-or$input-format inputs data-size)
                (comp-v-or$valid-st st data-size))
           (comp-v-or$valid-st (comp-v-or$step inputs st data-size)
                               data-size))
  :hints (("Goal"
           :use (comp-v-or$input-format=>q2$input-format
                 comp-v-or$input-format=>q3$input-format)
           :in-theory (e/d (f-sr
                            joint-act
                            comp-v-or$valid-st
                            comp-v-or$step
                            comp-v-or$in-act
                            comp-v-or$out-act)
                           (comp-v-or$input-format=>q2$input-format
                            comp-v-or$input-format=>q3$input-format)))))

(defthm comp-v-or$extract-lemma
  (implies (and (comp-v-or$valid-st st data-size)
                (comp-v-or$inv st)
                (comp-v-or$out-act inputs st data-size))
           (equal (list (comp-v-or$data-out st))
                  (nthcdr (1- (len (comp-v-or$extract st)))
                          (comp-v-or$extract st))))
  :hints (("Goal"
           :in-theory (e/d (left-associativity-of-append
                            comp-v-or$valid-st
                            comp-v-or$inv
                            comp-v-or$extract
                            comp-v-or$out-act
                            comp-v-or$data-out)
                           (acl2::append-of-cons
                            associativity-of-append
                            append)))))

;; Extract the accepted input sequence

(seq-gen comp-v-or in in-act 0
         (cons (comp-v-or$a inputs data-size)
               (comp-v-or$b inputs data-size)))

;; Extract the valid output sequence

(seq-gen comp-v-or out out-act 1
         (comp-v-or$data-out st)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma comp-v-or :op comp-v-or$op :inv t)