File: queue10.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (577 lines) | stat: -rw-r--r-- 20,136 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "queue4")
(include-book "queue5")

(local (include-book "arithmetic/top" :dir :system))

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of Q10
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of Q10
;;
;; Construct a DE module generator for a queue of four links, Q10, using the
;; link-joint model.  Prove the value and state lemmas for this module
;; generator.

(defconst *queue10$go-num* (+ *queue4$go-num*
                              *queue5$go-num*))

(defun queue10$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(defun queue10$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (queue10$data-ins-len data-size)
     *queue10$go-num*))

;; DE module generator of Q10

(module-generator
 queue10* (data-size)
 (si 'queue10 data-size)
 (list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
                                     (sis 'go 0 *queue10$go-num*)))
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 '(l q4 q5)
 (list
  ;; LINK
  ;; L
  (list 'l
        (list* 'l-status (sis 'd-out 0 data-size))
        (si 'link data-size)
        (list* 'q4-out-act 'q5-in-act (sis 'd-in 0 data-size)))

  ;; JOINTS
  ;; Q4
  (list 'q4
        (list* 'in-act 'q4-out-act
               (sis 'd-in 0 data-size))
        (si 'queue4 data-size)
        (list* 'full-in 'l-status (append (sis 'data-in 0 data-size)
                                          (sis 'go 0 *queue4$go-num*))))

  ;; Q5
  (list 'q5
        (list* 'q5-in-act 'out-act
               (sis 'data-out 0 data-size))
        (si 'queue5 data-size)
        (list* 'l-status 'empty-out- (append (sis 'd-out 0 data-size)
                                             (sis 'go
                                                  *queue4$go-num*
                                                  *queue5$go-num*)))))
 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'queue10 '(l q4 q5) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of Q10.

(defund queue10$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (queue10* data-size)
        (union$ (queue4$netlist data-size)
                (queue5$netlist data-size)
                :test 'equal)))

;; Recognizer for Q10

(defund queue10& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'queue10 data-size) netlist)))
    (and (equal (assoc (si 'queue10 data-size) netlist)
                (queue10* data-size))
         (link& subnetlist data-size)
         (queue4& subnetlist data-size)
         (queue5& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-queue10$netlist-64
   (and (net-syntax-okp (queue10$netlist 64))
        (net-arity-okp (queue10$netlist 64))
        (queue10& (queue10$netlist 64) 64))))

;; Constraints on the state of Q10

(defund queue10$st-format (st data-size)
  (b* ((l (nth *queue10$l* st))
       (q4 (nth *queue10$q4* st))
       (q5 (nth *queue10$q5* st)))
    (and (link$st-format l data-size)
         (queue4$st-format q4 data-size)
         (queue5$st-format q5 data-size))))

(defthm queue10$st-format=>constraint
  (implies (queue10$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue10$st-format)))
  :rule-classes :forward-chaining)

(defund queue10$valid-st (st data-size)
  (b* ((l (nth *queue10$l* st))
       (q4 (nth *queue10$q4* st))
       (q5 (nth *queue10$q5* st)))
    (and (link$valid-st l data-size)
         (queue4$valid-st q4 data-size)
         (queue5$valid-st q5 data-size))))

(defthmd queue10$valid-st=>constraint
  (implies (queue10$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue10$valid-st)))
  :rule-classes :forward-chaining)

(defthmd queue10$valid-st=>st-format
  (implies (queue10$valid-st st data-size)
           (queue10$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue4$valid-st=>st-format
                                   queue5$valid-st=>st-format
                                   queue10$st-format
                                   queue10$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for Q10

(progn
  ;; Extract the input data

  (defun queue10$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-queue10$data-in
    (equal (len (queue10$data-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable queue10$data-in))

  ;; Extract the inputs for joint Q4

  (defund queue10$q4-inputs (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (data-in (queue10$data-in inputs data-size))
         (go-signals (nthcdr (queue10$data-ins-len data-size) inputs))

         (q4-go-signals (take *queue4$go-num* go-signals))

         (l (nth *queue10$l* st))
         (l.s (nth *link$s* l)))

      (list* full-in (f-buf (car l.s))
             (append data-in q4-go-signals))))

  ;; Extract the inputs for joint Q5

  (defund queue10$q5-inputs (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (queue10$data-ins-len data-size) inputs))

         (q5-go-signals (take *queue5$go-num*
                              (nthcdr *queue4$go-num* go-signals)))

         (l (nth *queue10$l* st))
         (l.s (nth *link$s* l))
         (l.d (nth *link$d* l)))

      (list* (f-buf (car l.s)) empty-out-
             (append (v-threefix (strip-cars l.d)) q5-go-signals))))

  ;; Extract the "in-act" signal

  (defund queue10$in-act (inputs st data-size)
    (b* ((q4-inputs (queue10$q4-inputs inputs st data-size))
         (q4 (nth *queue10$q4* st)))
      (queue4$in-act q4-inputs q4 data-size)))

  (defthm queue10$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (queue10$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue10$q4-inputs
                                       queue10$in-act))))

  ;; Extract the "out-act" signal

  (defund queue10$out-act (inputs st data-size)
    (b* ((q5-inputs (queue10$q5-inputs inputs st data-size))
         (q5 (nth *queue10$q5* st)))
      (queue5$out-act q5-inputs q5 data-size)))

  (defthm queue10$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (queue10$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue10$q5-inputs
                                       queue10$out-act))))

  ;; Extract the output data

  (defund queue10$data-out (st)
    (b* ((q5 (nth *queue10$q5* st)))
      (queue5$data-out q5)))

  (defthm len-queue10$data-out-1
    (implies (queue10$st-format st data-size)
             (equal (len (queue10$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue10$st-format
                                       queue10$data-out))))

  (defthm len-queue10$data-out-2
    (implies (queue10$valid-st st data-size)
             (equal (len (queue10$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue10$valid-st
                                       queue10$data-out))))

  (defthm bvp-queue10$data-out
    (implies (and (queue10$valid-st st data-size)
                  (queue10$out-act inputs st data-size))
             (bvp (queue10$data-out st)))
    :hints (("Goal" :in-theory (enable queue10$valid-st
                                       queue10$out-act
                                       queue10$data-out))))

  (defun queue10$outputs (inputs st data-size)
    (list* (queue10$in-act inputs st data-size)
           (queue10$out-act inputs st data-size)
           (queue10$data-out st)))
  )

;; The value lemma for Q10

(defthm queue10$value
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue10& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue10$go-num*)
                  (queue10$st-format st data-size))
             (equal (se (si 'queue10 data-size) inputs st netlist)
                    (queue10$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'queue10 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue10&
                            queue10*$destructure
                            queue10$st-format
                            queue10$data-in
                            queue10$q4-inputs
                            queue10$q5-inputs
                            queue10$in-act
                            queue10$out-act
                            queue10$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of Q10.

(defun queue10$step (inputs st data-size)
  (b* ((l (nth *queue10$l* st))
       (q4 (nth *queue10$q4* st))
       (q5 (nth *queue10$q5* st))

       (q4-inputs (queue10$q4-inputs inputs st data-size))
       (q5-inputs (queue10$q5-inputs inputs st data-size))

       (q4-out-act (queue4$out-act q4-inputs q4 data-size))
       (q5-in-act (queue5$in-act q5-inputs q5 data-size))
       (d-in (queue4$data-out q4))

       (l-inputs (list* q4-out-act q5-in-act d-in)))
    (list
     ;; L
     (link$step l-inputs l data-size)
     ;; Joint Q4
     (queue4$step q4-inputs q4 data-size)
     ;; Joint Q5
     (queue5$step q5-inputs q5 data-size))))

;; The state lemma for Q10

(defthm queue10$state
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue10& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue10$go-num*)
                  (queue10$st-format st data-size))
             (equal (de (si 'queue10 data-size) inputs st netlist)
                    (queue10$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'queue10 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue10&
                            queue10*$destructure
                            queue10$st-format
                            queue10$data-in
                            queue10$q4-inputs
                            queue10$q5-inputs
                            queue10$in-act
                            queue10$out-act)
                           (de-module-disabled-rules)))))

(in-theory (disable queue10$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund queue10$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data-in    (queue10$data-in inputs data-size))
       (go-signals (nthcdr (queue10$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *queue10$go-num*)
     (equal inputs
            (list* full-in empty-out- (append data-in go-signals))))))

(local
 (defthm queue10$input-format=>q4$input-format
   (implies (and (queue10$input-format inputs data-size)
                 (queue10$valid-st st data-size))
            (queue4$input-format
             (queue10$q4-inputs inputs st data-size)
             data-size))
   :hints (("Goal"
            :in-theory (e/d (queue4$input-format
                             queue4$data-in
                             queue10$input-format
                             queue10$valid-st
                             queue10$q4-inputs)
                            ())))))

(local
 (defthm queue10$input-format=>q5$input-format
   (implies (and (queue10$input-format inputs data-size)
                 (queue10$valid-st st data-size))
            (queue5$input-format
             (queue10$q5-inputs inputs st data-size)
             data-size))
   :hints (("Goal"
            :in-theory (e/d (queue5$input-format
                             queue5$data-in
                             queue10$input-format
                             queue10$valid-st
                             queue10$q5-inputs)
                            ())))))

(defthm booleanp-queue10$in-act
  (implies (and (queue10$input-format inputs data-size)
                (queue10$valid-st st data-size))
           (booleanp (queue10$in-act inputs st data-size)))
  :hints (("Goal"
           :in-theory (enable queue10$valid-st
                              queue10$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-queue10$out-act
  (implies (and (queue10$input-format inputs data-size)
                (queue10$valid-st st data-size))
           (booleanp (queue10$out-act inputs st data-size)))
  :hints (("Goal"
           :in-theory (enable queue10$valid-st
                              queue10$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma queue10)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for Q10 that extracts the future output sequence from
;; the current state.

(defund queue10$extract (st)
  (b* ((l (nth *queue10$l* st))
       (q4 (nth *queue10$q4* st))
       (q5 (nth *queue10$q5* st)))
    (append (queue4$extract q4)
            (extract-valid-data (list l))
            (queue5$extract q5))))

(defthm queue10$extract-not-empty
  (implies (and (queue10$out-act inputs st data-size)
                (queue10$valid-st st data-size))
           (< 0 (len (queue10$extract st))))
  :hints (("Goal"
           :in-theory (e/d (queue10$valid-st
                            queue10$extract
                            queue10$out-act)
                           ())))
  :rule-classes :linear)

;; The extracted next-state function for Q10.  Note that this function avoids
;; exploring the internal computation of Q10.

(defund queue10$extracted-step (inputs st data-size)
  (b* ((data (queue10$data-in inputs data-size))
       (extracted-st (queue10$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (queue10$out-act inputs st data-size) t)
      (cond
       ((equal (queue10$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (queue10$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(progn
  (local
   (defthm queue10$q4-out-act-inactive
     (implies (equal (nth *link$s* (nth *queue10$l* st))
                     '(t))
              (not (queue4$out-act (queue10$q4-inputs inputs st data-size)
                                   (nth *queue10$q4* st)
                                   data-size)))
     :hints (("Goal" :in-theory (enable queue10$q4-inputs)))))

  (local
   (defthm queue10$q5-in-act-inactive
     (implies (equal (nth *link$s* (nth *queue10$l* st))
                     '(nil))
              (not (queue5$in-act (queue10$q5-inputs inputs st data-size)
                                  (nth *queue10$q5* st)
                                  data-size)))
     :hints (("Goal" :in-theory (enable queue10$q5-inputs)))))

  (local
   (defthm queue10$q4-data-in-rewrite
     (equal (queue4$data-in
             (queue10$q4-inputs inputs st data-size)
             data-size)
            (queue10$data-in inputs data-size))
     :hints (("Goal"
              :in-theory (enable queue4$data-in
                                 queue10$q4-inputs)))))

  (local
   (defthm queue10$q5-data-in-rewrite
     (b* ((l (nth *queue10$l* st))
          (l.d (nth *link$d* l)))
       (implies (equal (len l.d) data-size)
                (equal (queue5$data-in
                        (queue10$q5-inputs inputs st data-size)
                        data-size)
                       (v-threefix (strip-cars l.d)))))
     :hints (("Goal"
              :in-theory (enable queue5$data-in
                                 queue10$q5-inputs)))))

  (defthm queue10$extracted-step-correct
    (b* ((next-st (queue10$step inputs st data-size)))
      (implies (and (queue10$input-format inputs data-size)
                    (queue10$valid-st st data-size))
               (equal (queue10$extract next-st)
                      (queue10$extracted-step inputs st data-size))))
    :hints (("Goal"
             :use (queue10$input-format=>q4$input-format
                   queue10$input-format=>q5$input-format)
             :in-theory (e/d (f-sr
                              left-associativity-of-append
                              queue4$extracted-step
                              queue5$extracted-step
                              queue10$extracted-step
                              queue10$valid-st
                              queue10$step
                              queue10$in-act
                              queue10$out-act
                              queue10$extract)
                             (queue10$input-format=>q4$input-format
                              queue10$input-format=>q5$input-format
                              associativity-of-append)))))
  )

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that queue10$valid-st is an invariant.

(defthm queue10$valid-st-preserved
  (implies (and (queue10$input-format inputs data-size)
                (queue10$valid-st st data-size))
           (queue10$valid-st (queue10$step inputs st data-size)
                            data-size))
  :hints (("Goal"
           :use (queue10$input-format=>q4$input-format
                 queue10$input-format=>q5$input-format)
           :in-theory (e/d (f-sr
                            queue10$valid-st
                            queue10$step)
                           (queue10$input-format=>q4$input-format
                            queue10$input-format=>q5$input-format)))))

(defthm queue10$extract-lemma
  (implies (and (queue10$valid-st st data-size)
                (queue10$out-act inputs st data-size))
           (equal (list (queue10$data-out st))
                  (nthcdr (1- (len (queue10$extract st)))
                          (queue10$extract st))))
  :hints (("Goal"
           :in-theory (enable queue10$valid-st
                              queue10$extract
                              queue10$out-act
                              queue10$data-out))))

;; Extract the accepted input sequence

(seq-gen queue10 in in-act 0
         (queue10$data-in inputs data-size))

;; Extract the valid output sequence

(seq-gen queue10 out out-act 1
         (queue10$data-out st)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma queue10)