File: queue2.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (506 lines) | stat: -rw-r--r-- 17,157 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "../link-joint")
(include-book "../vector-module")

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of Q2
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of Q2
;;
;; Construct a DE module generator for a queue of two links, Q2, using the
;; link-joint model.  Prove the value and state lemmas for this module
;; generator.

(defconst *queue2$go-num* 3)

(defun queue2$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(defun queue2$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (queue2$data-ins-len data-size)
     *queue2$go-num*))

;; DE module generator of Q2

(module-generator
 queue2* (data-size)
 ;; MODULE'S NAME
 (si 'queue2 data-size)
 ;; INPUTS
 ;; There are 3 types of inputs for a complex joint:
 ;; * full-in and empty-out- signals,
 ;; * input data,
 ;; * GO signals.
 (list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
                                     (sis 'go 0 *queue2$go-num*)))
 ;; OUTPUTS
 ;; For a complex joint, in addition to outputing the data, we also report the
 ;; "act" signals from the joints at the module's input and output ports.
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 ;; INTERNAL STATE
 '(l0 l1)
 ;; OCCURRENCES
 ;; Our DE description of a self-timed module allows links and joints to appear
 ;; in any order in the module's occurrence list, except that LINKS MUST BE
 ;; DECLARED BEFORE JOINTS so that when the module is being evaluated, the "se"
 ;; function called in the first pass will extract the links' full/empty states
 ;; and data and provide these values as inputs for the corresponding joints;
 ;; the "de" function wil make the second pass to update the link's full/empty
 ;; states and data using the joints' output values calculated from the first
 ;; pass.
 (list
  ;; LINKS
  ;; L0
  (list 'l0
        (list* 'l0-status (sis 'd0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'trans-act (sis 'd0-in 0 data-size)))

  ;; L1
  (list 'l1
        (list* 'l1-status (sis 'd1-out 0 data-size))
        (si 'link data-size)
        (list* 'trans-act 'out-act (sis 'd1-in 0 data-size)))

  ;; JOINTS
  ;; In
  (list 'in-cntl
        '(in-act)
        'joint-cntl
        (list 'full-in 'l0-status (si 'go 0)))
  (list 'in-op
        (sis 'd0-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'data-in 0 data-size))

  ;; Transfer data from L0 to L1
  (list 'trans-cntl
        '(trans-act)
        'joint-cntl
        (list 'l0-status 'l1-status (si 'go 1)))
  (list 'trans-op
        (sis 'd1-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd0-out 0 data-size))

  ;; Out
  (list 'out-cntl
        '(out-act)
        'joint-cntl
        (list 'l1-status 'empty-out- (si 'go 2)))
  (list 'out-op
        (sis 'data-out 0 data-size)
        (si 'v-buf data-size)
        (sis 'd1-out 0 data-size)))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'queue2 '(l0 l1) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of Q2.

(defund queue2$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (queue2* data-size)
        (union$ (link$netlist data-size)
                *joint-cntl*
                (v-buf$netlist data-size)
                :test 'equal)))

;; Recognizer for Q2

(defund queue2& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'queue2 data-size) netlist)))
    (and (equal (assoc (si 'queue2 data-size) netlist)
                (queue2* data-size))
         (link& subnetlist data-size)
         (joint-cntl& subnetlist)
         (v-buf& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-queue2$netlist-64
   (and (net-syntax-okp (queue2$netlist 64))
        (net-arity-okp (queue2$netlist 64))
        (queue2& (queue2$netlist 64) 64))))

;; Constraints on the state of Q2

(defund queue2$st-format (st data-size)
  (b* ((l0 (nth *queue2$l0* st))
       (l1 (nth *queue2$l1* st)))
    (and (link$st-format l0 data-size)
         (link$st-format l1 data-size))))

(defthm queue2$st-format=>constraint
  (implies (queue2$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue2$st-format)))
  :rule-classes :forward-chaining)

(defund queue2$valid-st (st data-size)
  (b* ((l0 (nth *queue2$l0* st))
       (l1 (nth *queue2$l1* st)))
    (and (link$valid-st l0 data-size)
         (link$valid-st l1 data-size))))

(defthmd queue2$valid-st=>constraint
  (implies (queue2$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue2$valid-st)))
  :rule-classes :forward-chaining)

(defthmd queue2$valid-st=>st-format
  (implies (queue2$valid-st st data-size)
           (queue2$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue2$st-format
                                   queue2$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for Q2

(progn
  ;; Extract the input data

  (defun queue2$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-queue2$data-in
    (equal (len (queue2$data-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable queue2$data-in))

  ;; Extract the "in-act" signal

  (defund queue2$in-act (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (go-signals (nthcdr (queue2$data-ins-len data-size) inputs))
         (go-in (nth 0 go-signals))

         (l0 (nth *queue2$l0* st))
         (l0.s (nth *link$s* l0)))
      (joint-act full-in (car l0.s) go-in)))

  (defthm queue2$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (queue2$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue2$in-act))))

  ;; Extract the "out-act" signal

  (defund queue2$out-act (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (queue2$data-ins-len data-size) inputs))
         (go-out (nth 2 go-signals))

         (l1 (nth *queue2$l1* st))
         (l1.s (nth *link$s* l1)))
      (joint-act (car l1.s) empty-out- go-out)))

  (defthm queue2$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (queue2$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue2$out-act))))

  ;; Extract the output data

  (defund queue2$data-out (st)
    (v-threefix (strip-cars (nth *link$d*
                                 (nth *queue2$l1* st)))))

  (defthm len-queue2$data-out-1
    (implies (queue2$st-format st data-size)
             (equal (len (queue2$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue2$st-format
                                       queue2$data-out))))

  (defthm len-queue2$data-out-2
    (implies (queue2$valid-st st data-size)
             (equal (len (queue2$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue2$valid-st
                                       queue2$data-out))))

  (defthm bvp-queue2$data-out
    (implies (and (queue2$valid-st st data-size)
                  (queue2$out-act inputs st data-size))
             (bvp (queue2$data-out st)))
    :hints (("Goal" :in-theory (enable queue2$valid-st
                                       queue2$out-act
                                       queue2$data-out))))

  (defun queue2$outputs (inputs st data-size)
    (list* (queue2$in-act inputs st data-size)
           (queue2$out-act inputs st data-size)
           (queue2$data-out st)))
  )

;; The value lemma for Q2

(defthm queue2$value
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue2& netlist data-size)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue2$go-num*)
                  (queue2$st-format st data-size))
             (equal (se (si 'queue2 data-size) inputs st netlist)
                    (queue2$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'queue2 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue2&
                            queue2*$destructure
                            queue2$st-format
                            queue2$in-act
                            queue2$out-act
                            queue2$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of Q2, namely, the next states of two
;; links L0 and L1.

(defun queue2$step (inputs st data-size)
  (b* ((data-in    (queue2$data-in inputs data-size))
       (go-signals (nthcdr (queue2$data-ins-len data-size) inputs))

       (go-trans (nth 1 go-signals))

       (l0 (nth *queue2$l0* st))
       (l0.s (nth *link$s* l0))
       (l0.d (nth *link$d* l0))
       (l1 (nth *queue2$l1* st))
       (l1.s (nth *link$s* l1))

       (in-act (queue2$in-act inputs st data-size))
       (out-act (queue2$out-act inputs st data-size))
       (trans-act (joint-act (car l0.s) (car l1.s) go-trans))

       (l0-inputs (list* in-act trans-act data-in))
       (l1-inputs (list* trans-act out-act (strip-cars l0.d))))
    (list
     ;; L0
     (link$step l0-inputs l0 data-size)
     ;; L1
     (link$step l1-inputs l1 data-size))))

;; The state lemma for Q2

(defthm queue2$state
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue2& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue2$go-num*)
                  (queue2$st-format st data-size))
             (equal (de (si 'queue2 data-size) inputs st netlist)
                    (queue2$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'queue2 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue2&
                            queue2*$destructure
                            queue2$st-format
                            queue2$data-in
                            queue2$in-act
                            queue2$out-act)
                           (de-module-disabled-rules)))))

(in-theory (disable queue2$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund queue2$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data-in    (queue2$data-in inputs data-size))
       (go-signals (nthcdr (queue2$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *queue2$go-num*)
     (equal inputs
            (list* full-in empty-out- (append data-in go-signals))))))

(defthm booleanp-queue2$in-act
  (implies (and (queue2$input-format inputs data-size)
                (queue2$valid-st st data-size))
           (booleanp (queue2$in-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue2$input-format
                                     queue2$valid-st
                                     queue2$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-queue2$out-act
  (implies (and (queue2$input-format inputs data-size)
                (queue2$valid-st st data-size))
           (booleanp (queue2$out-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue2$input-format
                                     queue2$valid-st
                                     queue2$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma queue2)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for Q2 that extracts the future output sequence from
;; the current state.

(defund queue2$extract (st)
  (b* ((l0 (nth *queue2$l0* st))
       (l1 (nth *queue2$l1* st)))
    (extract-valid-data (list l0 l1))))

(defthm queue2$extract-not-empty
  (implies (and (queue2$out-act inputs st data-size)
                (queue2$valid-st st data-size))
           (< 0 (len (queue2$extract st))))
  :hints (("Goal"
           :in-theory (e/d (queue2$valid-st
                            queue2$extract
                            queue2$out-act)
                           ())))
  :rule-classes :linear)

;; The extracted next-state function for Q2.  Note that this function avoids
;; exploring the internal computation of Q2.

(defund queue2$extracted-step (inputs st data-size)
  (b* ((data (queue2$data-in inputs data-size))
       (extracted-st (queue2$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (queue2$out-act inputs st data-size) t)
      (cond
       ((equal (queue2$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (queue2$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

;; This property characterizes the one-step update on the future output
;; sequence given the current inputs and current state.  The trick here is to
;; apply the extraction function queue2$extract to the step function
;; queue2$step so that the one-step update on the future output sequence can be
;; expressed in terms of the queue2$extracted-step function, which abstracts
;; away the internal computation of Q2.

(defthm queue2$extracted-step-correct
  (b* ((next-st (queue2$step inputs st data-size)))
    (implies (and (queue2$input-format inputs data-size)
                  (queue2$valid-st st data-size))
             (equal (queue2$extract next-st)
                    (queue2$extracted-step inputs st data-size))))
  :hints (("Goal"
           :in-theory (enable f-sr
                              queue2$extracted-step
                              queue2$input-format
                              queue2$valid-st
                              queue2$st-format
                              queue2$step
                              queue2$in-act
                              queue2$out-act
                              queue2$extract))))

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that queue2$valid-st is an invariant.

(defthm queue2$valid-st-preserved
  (implies (and (queue2$input-format inputs data-size)
                (queue2$valid-st st data-size))
           (queue2$valid-st (queue2$step inputs st data-size)
                            data-size))
  :hints (("Goal"
           :in-theory (e/d (f-sr
                            queue2$input-format
                            queue2$valid-st
                            queue2$st-format
                            queue2$step
                            queue2$in-act
                            queue2$out-act)
                           (nfix)))))

(defthm queue2$extract-lemma
  (implies (and (queue2$valid-st st data-size)
                (queue2$out-act inputs st data-size))
           (equal (list (queue2$data-out st))
                  (nthcdr (1- (len (queue2$extract st)))
                          (queue2$extract st))))
  :hints (("Goal"
           :in-theory (enable queue2$valid-st
                              queue2$st-format
                              queue2$extract
                              queue2$out-act
                              queue2$data-out))))

;; Extract the accepted input sequence

(seq-gen queue2 in in-act 0
         (queue2$data-in inputs data-size))

;; Extract the valid output sequence

(seq-gen queue2 out out-act 1
         (queue2$data-out st)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma queue2)