File: queue3-l.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (544 lines) | stat: -rw-r--r-- 18,418 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "../link-joint")
(include-book "../vector-module")

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of QUEUE3-L
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of QUEUE3-L
;;
;; Construct a DE module generator for a queue of 3 links, QUEUE3-L, using the
;; link-joint model.  Prove the value and state lemmas for this module
;; generator.  Note that QUEUE3-L is a complex link.

(defconst *queue3-l$go-num* 2)

(defun queue3-l$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(defun queue3-l$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (queue3-l$data-ins-len data-size)
     *queue3-l$go-num*))

;; DE module generator of QUEUE3-L

(module-generator
 queue3-l* (data-size)
 (si 'queue3-l data-size)
 ;; INPUTS
 ;; There are 3 types of inputs for a complex link:
 ;; * in-act and out-act signals,
 ;; * input data,
 ;; * GO signals.
 (list* 'in-act 'out-act (append (sis 'data-in 0 data-size)
                                 (sis 'go 0 *queue3-l$go-num*)))
 ;; OUTPUTS
 ;; For a complex link, in addition to outputing the data, we also report the
 ;; "ready-in-" signals from the links at the module's input ports and the
 ;; "ready-out" signals from the links at the module's output ports.
 (list* 'ready-in- 'ready-out
        (sis 'data-out 0 data-size))
 '(l0 l1 l2)
 (list
  ;; LINKS
  ;; L0
  (list 'l0
        (list* 'l0-status (sis 'd0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'trans1-act (sis 'data-in 0 data-size)))

  ;; L1
  (list 'l1
        (list* 'l1-status (sis 'd1-out 0 data-size))
        (si 'link data-size)
        (list* 'trans1-act 'trans2-act (sis 'd1-in 0 data-size)))

  ;; L2
  (list 'l2
        (list* 'l2-status (sis 'data-out 0 data-size))
        (si 'link data-size)
        (list* 'trans2-act 'out-act (sis 'd2-in 0 data-size)))

  ;; JOINTS
  ;; Transfer data1
  (list 'trans1-cntl
        '(trans1-act)
        'joint-cntl
        (list 'l0-status 'l1-status (si 'go 0)))
  (list 'trans1-op
        (sis 'd1-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd0-out 0 data-size))

  ;; Transfer data2
  (list 'trans2-cntl
        '(trans2-act)
        'joint-cntl
        (list 'l1-status 'l2-status (si 'go 1)))
  (list 'trans2-op
        (sis 'd2-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd1-out 0 data-size))

  ;; STATUS
  '(in-status (ready-in-) wire (l0-status))
  '(out-status (ready-out) wire (l2-status)))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'queue3-l '(l0 l1 l2) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of
;; QUEUE3-L.

(defund queue3-l$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (queue3-l* data-size)
        (union$ (link$netlist data-size)
                *joint-cntl*
                (v-buf$netlist data-size)
                :test 'equal)))

;; Recognizer for QUEUE3-L

(defund queue3-l& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'queue3-l data-size) netlist)))
    (and (equal (assoc (si 'queue3-l data-size) netlist)
                (queue3-l* data-size))
         (joint-cntl& subnetlist)
         (link& subnetlist data-size)
         (v-buf& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-queue3-l$netlist-64
   (and (net-syntax-okp (queue3-l$netlist 64))
        (net-arity-okp (queue3-l$netlist 64))
        (queue3-l& (queue3-l$netlist 64) 64))))

;; Constraints on the state of QUEUE3-L

(defund queue3-l$st-format (st data-size)
  (b* ((l0 (nth *queue3-l$l0* st))
       (l1 (nth *queue3-l$l1* st))
       (l2 (nth *queue3-l$l2* st)))
    (and (link$st-format l0 data-size)
         (link$st-format l1 data-size)
         (link$st-format l2 data-size))))

(defthm queue3-l$st-format=>constraint
  (implies (queue3-l$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue3-l$st-format)))
  :rule-classes :forward-chaining)

(defund queue3-l$valid-st (st data-size)
  (b* ((l0 (nth *queue3-l$l0* st))
       (l1 (nth *queue3-l$l1* st))
       (l2 (nth *queue3-l$l2* st)))
    (and (link$valid-st l0 data-size)
         (link$valid-st l1 data-size)
         (link$valid-st l2 data-size))))

(defthmd queue3-l$valid-st=>constraint
  (implies (queue3-l$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue3-l$valid-st)))
  :rule-classes :forward-chaining)

(defthmd queue3-l$valid-st=>st-format
  (implies (queue3-l$valid-st st data-size)
           (queue3-l$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue3-l$st-format
                                   queue3-l$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for QUEUE3-L

(progn
  ;; Extract the "in-act" signal

  (defund queue3-l$in-act (inputs)
    (nth 0 inputs))

  ;; Extract the "out-act" signal

  (defund queue3-l$out-act (inputs)
    (nth 1 inputs))

  ;; Extract the input data

  (defun queue3-l$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-queue3-l$data-in
    (equal (len (queue3-l$data-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable queue3-l$data-in))

  ;; Extract the "ready-in-" signal

  (defund queue3-l$ready-in- (st)
    (b* ((l0 (nth *queue3-l$l0* st))
         (l0.s (nth *link$s* l0)))
      (f-buf (car l0.s))))

  (defthm booleanp-queue3-l$ready-in-
    (implies (queue3-l$valid-st st data-size)
             (booleanp (queue3-l$ready-in- st)))
    :hints (("Goal" :in-theory (enable queue3-l$valid-st
                                       queue3-l$ready-in-)))
    :rule-classes (:rewrite :type-prescription))

  ;; Extract the "ready-out" signal

  (defund queue3-l$ready-out (st)
    (b* ((l2 (nth *queue3-l$l2* st))
         (l2.s (nth *link$s* l2)))
      (f-buf (car l2.s))))

  (defthm booleanp-queue3-l$ready-out
    (implies (queue3-l$valid-st st data-size)
             (booleanp (queue3-l$ready-out st)))
    :hints (("Goal" :in-theory (enable queue3-l$valid-st
                                       queue3-l$ready-out)))
    :rule-classes (:rewrite :type-prescription))

  ;; Extract the output data

  (defund queue3-l$data-out (st)
    (v-threefix (strip-cars (nth *link$d*
                                 (nth *queue3-l$l2* st)))))

  (defthm v-threefix-of-queue3-l$data-out-canceled
    (equal (v-threefix (queue3-l$data-out st))
           (queue3-l$data-out st))
    :hints (("Goal" :in-theory (enable queue3-l$data-out))))

  (defthm len-queue3-l$data-out-1
    (implies (queue3-l$st-format st data-size)
             (equal (len (queue3-l$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue3-l$st-format
                                       queue3-l$data-out))))

  (defthm len-queue3-l$data-out-2
    (implies (queue3-l$valid-st st data-size)
             (equal (len (queue3-l$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue3-l$valid-st
                                       queue3-l$data-out))))

  (defthm bvp-queue3-l$data-out
    (implies (and (queue3-l$valid-st st data-size)
                  (queue3-l$ready-out st))
             (bvp (queue3-l$data-out st)))
    :hints (("Goal" :in-theory (enable queue3-l$valid-st
                                       queue3-l$ready-out
                                       queue3-l$data-out))))

  (defun queue3-l$outputs (inputs st data-size)
    (declare (ignore inputs data-size))
    (list* (queue3-l$ready-in- st)
           (queue3-l$ready-out st)
           (queue3-l$data-out st)))
  )

;; The value lemma for QUEUE3-L

(defthm queue3-l$value
  (b* ((inputs (list* in-act out-act (append data-in go-signals))))
    (implies (and (queue3-l& netlist data-size)
                  (queue3-l$st-format st data-size))
             (equal (se (si 'queue3-l data-size) inputs st netlist)
                    (queue3-l$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'queue3-l data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue3-l&
                            queue3-l*$destructure
                            queue3-l$st-format
                            queue3-l$ready-in-
                            queue3-l$ready-out
                            queue3-l$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of QUEUE3-L.

(defun queue3-l$step (inputs st data-size)
  (b* ((in-act     (queue3-l$in-act inputs))
       (out-act    (queue3-l$out-act inputs))
       (data-in    (queue3-l$data-in inputs data-size))
       (go-signals (nthcdr (queue3-l$data-ins-len data-size) inputs))

       (go-trans1 (nth 0 go-signals))
       (go-trans2 (nth 1 go-signals))

       (l0 (nth *queue3-l$l0* st))
       (l0.s (nth *link$s* l0))
       (l0.d (nth *link$d* l0))
       (l1 (nth *queue3-l$l1* st))
       (l1.s (nth *link$s* l1))
       (l1.d (nth *link$d* l1))
       (l2 (nth *queue3-l$l2* st))
       (l2.s (nth *link$s* l2))

       (trans1-act (joint-act (car l0.s) (car l1.s) go-trans1))
       (trans2-act (joint-act (car l1.s) (car l2.s) go-trans2))

       (l0-inputs (list* in-act trans1-act data-in))
       (l1-inputs (list* trans1-act trans2-act
                         (fv-if in-act data-in (strip-cars l0.d))))
       (l2-inputs (list* trans2-act out-act (strip-cars l1.d))))
    (list
     ;; L0
     (link$step l0-inputs l0 data-size)
     ;; L1
     (link$step l1-inputs l1 data-size)
     ;; L2
     (link$step l2-inputs l2 data-size))))

(defthm queue3-l$step-v-threefix-of-data-in-canceled
  (implies
   (and (true-listp data-in)
        (equal (len data-in) data-size))
   (equal (queue3-l$step (list* in-act out-act
                                (append (v-threefix data-in) go-signals))
                         st
                         data-size)
          (queue3-l$step (list* in-act out-act
                                (append data-in go-signals))
                         st
                         data-size)))
  :hints (("Goal" :in-theory (enable queue3-l$step
                                     queue3-l$data-in
                                     queue3-l$in-act
                                     queue3-l$out-act))))

;; The state lemma for QUEUE3-L

(defthm queue3-l$state
  (b* ((inputs (list* in-act out-act (append data-in go-signals))))
    (implies (and (queue3-l& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue3-l$go-num*)
                  (queue3-l$st-format st data-size))
             (equal (de (si 'queue3-l data-size) inputs st netlist)
                    (queue3-l$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'queue3-l data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue3-l&
                            queue3-l*$destructure
                            queue3-l$st-format
                            queue3-l$in-act
                            queue3-l$out-act
                            queue3-l$data-in)
                           (de-module-disabled-rules)))))

(in-theory (disable queue3-l$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund queue3-l$input-format (inputs st data-size)
  (b* ((in-act     (queue3-l$in-act inputs))
       (out-act    (queue3-l$out-act inputs))
       (data-in    (queue3-l$data-in inputs data-size))
       (go-signals (nthcdr (queue3-l$data-ins-len data-size) inputs))

       (ready-in- (queue3-l$ready-in- st))
       (ready-out (queue3-l$ready-out st)))
    (and
     (if ready-in-
         (not in-act)
       (booleanp in-act))
     (if (not ready-out)
         (not out-act)
       (booleanp out-act))
     (or (not in-act) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *queue3-l$go-num*)
     (equal inputs
            (list* in-act out-act (append data-in go-signals))))))

(defthm booleanp-queue3-l$in-act
  (implies (queue3-l$input-format inputs st data-size)
           (booleanp (queue3-l$in-act inputs)))
  :hints (("Goal" :in-theory (enable queue3-l$input-format
                                     queue3-l$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-queue3-l$out-act
  (implies (queue3-l$input-format inputs st data-size)
           (booleanp (queue3-l$out-act inputs)))
  :hints (("Goal" :in-theory (enable queue3-l$input-format
                                     queue3-l$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma queue3-l :clink t)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for QUEUE3-L that extracts the future output
;; sequence from the current state.

(defund queue3-l$extract (st)
  (b* ((l0 (nth *queue3-l$l0* st))
       (l1 (nth *queue3-l$l1* st))
       (l2 (nth *queue3-l$l2* st)))
    (extract-valid-data (list l0 l1 l2))))

(defthm queue3-l$extract-not-empty
  (implies (and (queue3-l$ready-out st)
                (queue3-l$valid-st st data-size))
           (< 0 (len (queue3-l$extract st))))
  :hints (("Goal" :in-theory (e/d (queue3-l$valid-st
                                   queue3-l$extract
                                   queue3-l$ready-out)
                                  ())))
  :rule-classes :linear)

;; The extracted next-state function for QUEUE3-L.  Note that this function
;; avoids exploring the internal computation of QUEUE3-L.

(defund queue3-l$extracted-step (inputs st data-size)
  (b* ((data (queue3-l$data-in inputs data-size))
       (extracted-st (queue3-l$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (queue3-l$out-act inputs) t)
      (cond
       ((equal (queue3-l$in-act inputs) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (queue3-l$in-act inputs) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(defthm queue3-l$extracted-step-correct
  (b* ((next-st (queue3-l$step inputs st data-size)))
    (implies (and (queue3-l$input-format inputs st data-size)
                  (queue3-l$valid-st st data-size))
             (equal (queue3-l$extract next-st)
                    (queue3-l$extracted-step inputs st data-size))))
  :hints (("Goal"
           :in-theory (enable f-sr
                              queue3-l$extracted-step
                              queue3-l$input-format
                              queue3-l$valid-st
                              queue3-l$step
                              queue3-l$ready-in-
                              queue3-l$ready-out
                              queue3-l$extract))))

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that queue3-l$valid-st is an invariant.

(defthm queue3-l$valid-st-preserved
  (implies (and (queue3-l$input-format inputs st data-size)
                (queue3-l$valid-st st data-size))
           (queue3-l$valid-st (queue3-l$step inputs st data-size)
                            data-size))
  :hints (("Goal"
           :in-theory (e/d (f-sr
                            queue3-l$input-format
                            queue3-l$valid-st
                            queue3-l$step
                            queue3-l$ready-in-
                            queue3-l$ready-out)
                           ()))))

(defthm queue3-l$extract-lemma-1
  (implies (and (queue3-l$input-format inputs st data-size)
                (queue3-l$valid-st st data-size)
                (queue3-l$out-act inputs))
           (equal (list (queue3-l$data-out st))
                  (nthcdr (1- (len (queue3-l$extract st)))
                          (queue3-l$extract st))))
  :hints (("Goal"
           :in-theory (enable queue3-l$input-format
                              queue3-l$valid-st
                              queue3-l$extract
                              queue3-l$out-act
                              queue3-l$ready-out
                              queue3-l$data-out))))

(defthmd queue3-l$extract-lemma-2
  (implies (and (queue3-l$valid-st st data-size)
                (queue3-l$ready-out st))
           (equal (list (queue3-l$data-out st))
                  (nthcdr (1- (len (queue3-l$extract st)))
                          (queue3-l$extract st))))
  :hints (("Goal"
           :in-theory (enable queue3-l$valid-st
                              queue3-l$extract
                              queue3-l$ready-out
                              queue3-l$data-out))))

;; Extract the accepted input sequence

(seq-gen queue3-l in in-act -1
         (queue3-l$data-in inputs data-size)
         :clink t)

;; Extract the valid output sequence

(seq-gen queue3-l out out-act -1
         (queue3-l$data-out st)
         :netlist-data (nthcdr 2 outputs)
         :clink t)

;; The multi-step input-output relationship

(in-out-stream-lemma queue3-l :clink t)