File: queue3.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (509 lines) | stat: -rw-r--r-- 16,776 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "../link-joint")
(include-book "../vector-module")

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of Q3
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of Q3
;;
;; Construct a DE module generator for a queue of three links, Q3, using the
;; link-joint model.  Prove the value and state lemmas for this module
;; generator.

(defconst *queue3$go-num* 4)

(defun queue3$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(defun queue3$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (queue3$data-ins-len data-size)
     *queue3$go-num*))

;; DE module generator of Q3

(module-generator
 queue3* (data-size)
 (si 'queue3 data-size)
 (list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
                                     (sis 'go 0 *queue3$go-num*)))
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 '(l0 l1 l2)
 (list
  ;; LINKS
  ;; L0
  (list 'l0
        (list* 'l0-status (sis 'd0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'trans1-act (sis 'd0-in 0 data-size)))

  ;; L1
  (list 'l1
        (list* 'l1-status (sis 'd1-out 0 data-size))
        (si 'link data-size)
        (list* 'trans1-act 'trans2-act (sis 'd1-in 0 data-size)))

  ;; L2
  (list 'l2
        (list* 'l2-status (sis 'd2-out 0 data-size))
        (si 'link data-size)
        (list* 'trans2-act 'out-act (sis 'd2-in 0 data-size)))

  ;; JOINTS
  ;; In
  (list 'in-cntl
        '(in-act)
        'joint-cntl
        (list 'full-in 'l0-status (si 'go 0)))
  (list 'in-op
        (sis 'd0-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'data-in 0 data-size))

  ;; Transfer data from L0 to L1
  (list 'trans1-cntl
        '(trans1-act)
        'joint-cntl
        (list 'l0-status 'l1-status (si 'go 1)))
  (list 'trans1-op
        (sis 'd1-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd0-out 0 data-size))

  ;; Transfer data from L1 to L2
  (list 'trans2-cntl
        '(trans2-act)
        'joint-cntl
        (list 'l1-status 'l2-status (si 'go 2)))
  (list 'trans2-op
        (sis 'd2-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd1-out 0 data-size))

  ;; Out
  (list 'out-cntl
        '(out-act)
        'joint-cntl
        (list 'l2-status 'empty-out- (si 'go 3)))
  (list 'out-op
        (sis 'data-out 0 data-size)
        (si 'v-buf data-size)
        (sis 'd2-out 0 data-size)))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'queue3 '(l0 l1 l2) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of Q3.

(defund queue3$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (queue3* data-size)
        (union$ (link$netlist data-size)
                *joint-cntl*
                (v-buf$netlist data-size)
                :test 'equal)))

;; Recognizer for Q3

(defund queue3& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'queue3 data-size) netlist)))
    (and (equal (assoc (si 'queue3 data-size) netlist)
                (queue3* data-size))
         (link& subnetlist data-size)
         (joint-cntl& subnetlist)
         (v-buf& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-queue3$netlist-64
   (and (net-syntax-okp (queue3$netlist 64))
        (net-arity-okp (queue3$netlist 64))
        (queue3& (queue3$netlist 64) 64))))

;; Constraints on the state of Q3

(defund queue3$st-format (st data-size)
  (b* ((l0 (nth *queue3$l0* st))
       (l1 (nth *queue3$l1* st))
       (l2 (nth *queue3$l2* st)))
    (and (link$st-format l0 data-size)
         (link$st-format l1 data-size)
         (link$st-format l2 data-size))))

(defthm queue3$st-format=>constraint
  (implies (queue3$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue3$st-format)))
  :rule-classes :forward-chaining)

(defund queue3$valid-st (st data-size)
  (b* ((l0 (nth *queue3$l0* st))
       (l1 (nth *queue3$l1* st))
       (l2 (nth *queue3$l2* st)))
    (and (link$valid-st l0 data-size)
         (link$valid-st l1 data-size)
         (link$valid-st l2 data-size))))

(defthmd queue3$valid-st=>constraint
  (implies (queue3$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue3$valid-st)))
  :rule-classes :forward-chaining)

(defthmd queue3$valid-st=>st-format
  (implies (queue3$valid-st st data-size)
           (queue3$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue3$st-format
                                   queue3$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for Q3

(progn
  ;; Extract the input data

  (defun queue3$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-queue3$data-in
    (equal (len (queue3$data-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable queue3$data-in))

  ;; Extract the "in-act" signal

  (defund queue3$in-act (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (go-signals (nthcdr (queue3$data-ins-len data-size) inputs))
         (go-in (nth 0 go-signals))

         (l0 (nth *queue3$l0* st))
         (l0.s (nth *link$s* l0)))
      (joint-act full-in (car l0.s) go-in)))

  (defthm queue3$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (queue3$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue3$in-act))))

  ;; Extract the "out-act" signal

  (defund queue3$out-act (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (queue3$data-ins-len data-size) inputs))
         (go-out (nth 3 go-signals))

         (l2 (nth *queue3$l2* st))
         (l2.s (nth *link$s* l2)))
      (joint-act (car l2.s) empty-out- go-out)))

  (defthm queue3$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (queue3$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue3$out-act))))

  ;; Extract the output data

  (defund queue3$data-out (st)
    (v-threefix (strip-cars (nth *link$d*
                                 (nth *queue3$l2* st)))))

  (defthm len-queue3$data-out-1
    (implies (queue3$st-format st data-size)
             (equal (len (queue3$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue3$st-format
                                       queue3$data-out))))

  (defthm len-queue3$data-out-2
    (implies (queue3$valid-st st data-size)
             (equal (len (queue3$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue3$valid-st
                                       queue3$data-out))))

  (defthm bvp-queue3$data-out
    (implies (and (queue3$valid-st st data-size)
                  (queue3$out-act inputs st data-size))
             (bvp (queue3$data-out st)))
    :hints (("Goal" :in-theory (enable queue3$valid-st
                                       queue3$out-act
                                       queue3$data-out))))

  (defun queue3$outputs (inputs st data-size)
    (list* (queue3$in-act inputs st data-size)
           (queue3$out-act inputs st data-size)
           (queue3$data-out st)))
  )

;; The value lemma for Q3

(defthm queue3$value
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue3& netlist data-size)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue3$go-num*)
                  (queue3$st-format st data-size))
             (equal (se (si 'queue3 data-size) inputs st netlist)
                    (queue3$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'queue3 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue3&
                            queue3*$destructure
                            queue3$st-format
                            queue3$in-act
                            queue3$out-act
                            queue3$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of Q3, namely, the next states of
;; three links L0, L1, and L2.

(defun queue3$step (inputs st data-size)
  (b* ((data-in    (queue3$data-in inputs data-size))
       (go-signals (nthcdr (queue3$data-ins-len data-size) inputs))

       (go-trans1 (nth 1 go-signals))
       (go-trans2 (nth 2 go-signals))

       (l0 (nth *queue3$l0* st))
       (l0.s (nth *link$s* l0))
       (l0.d (nth *link$d* l0))
       (l1 (nth *queue3$l1* st))
       (l1.s (nth *link$s* l1))
       (l1.d (nth *link$d* l1))
       (l2 (nth *queue3$l2* st))
       (l2.s (nth *link$s* l2))

       (in-act (queue3$in-act inputs st data-size))
       (out-act (queue3$out-act inputs st data-size))
       (trans1-act (joint-act (car l0.s) (car l1.s) go-trans1))
       (trans2-act (joint-act (car l1.s) (car l2.s) go-trans2))

       (l0-inputs (list* in-act trans1-act data-in))
       (l1-inputs (list* trans1-act trans2-act (strip-cars l0.d)))
       (l2-inputs (list* trans2-act out-act (strip-cars l1.d))))
    (list
     ;; L0
     (link$step l0-inputs l0 data-size)
     ;; L1
     (link$step l1-inputs l1 data-size)
     ;; L2
     (link$step l2-inputs l2 data-size))))

;; The state lemma for Q3

(defthm queue3$state
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue3& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue3$go-num*)
                  (queue3$st-format st data-size))
             (equal (de (si 'queue3 data-size) inputs st netlist)
                    (queue3$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'queue3 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue3&
                            queue3*$destructure
                            queue3$st-format
                            queue3$data-in
                            queue3$in-act
                            queue3$out-act)
                           (de-module-disabled-rules)))))

(in-theory (disable queue3$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund queue3$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data-in    (queue3$data-in inputs data-size))
       (go-signals (nthcdr (queue3$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *queue3$go-num*)
     (equal inputs
            (list* full-in empty-out- (append data-in go-signals))))))

(defthm booleanp-queue3$in-act
  (implies (and (queue3$input-format inputs data-size)
                (queue3$valid-st st data-size))
           (booleanp (queue3$in-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue3$input-format
                                     queue3$valid-st
                                     queue3$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-queue3$out-act
  (implies (and (queue3$input-format inputs data-size)
                (queue3$valid-st st data-size))
           (booleanp (queue3$out-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue3$input-format
                                     queue3$valid-st
                                     queue3$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma queue3)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for Q3 that extracts the future output sequence from
;; the current state.

(defund queue3$extract (st)
  (b* ((l0 (nth *queue3$l0* st))
       (l1 (nth *queue3$l1* st))
       (l2 (nth *queue3$l2* st)))
    (extract-valid-data (list l0 l1 l2))))

(defthm queue3$extract-not-empty
  (implies (and (queue3$out-act inputs st data-size)
                (queue3$valid-st st data-size))
           (< 0 (len (queue3$extract st))))
  :hints (("Goal"
           :in-theory (e/d (queue3$valid-st
                            queue3$extract
                            queue3$out-act)
                           ())))
  :rule-classes :linear)

;; The extracted next-state function for Q3.  Note that this function avoids
;; exploring the internal computation of Q3.

(defund queue3$extracted-step (inputs st data-size)
  (b* ((data (queue3$data-in inputs data-size))
       (extracted-st (queue3$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (queue3$out-act inputs st data-size) t)
      (cond
       ((equal (queue3$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (queue3$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(defthm queue3$extracted-step-correct
  (b* ((next-st (queue3$step inputs st data-size)))
    (implies (and (queue3$input-format inputs data-size)
                  (queue3$valid-st st data-size))
             (equal (queue3$extract next-st)
                    (queue3$extracted-step inputs st data-size))))
  :hints (("Goal"
           :in-theory (enable f-sr
                              queue3$extracted-step
                              queue3$input-format
                              queue3$valid-st
                              queue3$st-format
                              queue3$step
                              queue3$in-act
                              queue3$out-act
                              queue3$extract))))

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that queue3$valid-st is an invariant.

(defthm queue3$valid-st-preserved
  (implies (and (queue3$input-format inputs data-size)
                (queue3$valid-st st data-size))
           (queue3$valid-st (queue3$step inputs st data-size)
                            data-size))
  :hints (("Goal"
           :in-theory (e/d (queue3$input-format
                            queue3$valid-st
                            queue3$st-format
                            queue3$step
                            queue3$in-act
                            queue3$out-act
                            f-sr)
                           (nfix)))))

(defthm queue3$extract-lemma
  (implies (and (queue3$valid-st st data-size)
                (queue3$out-act inputs st data-size))
           (equal (list (queue3$data-out st))
                  (nthcdr (1- (len (queue3$extract st)))
                          (queue3$extract st))))
  :hints (("Goal"
           :in-theory (enable queue3$valid-st
                              queue3$st-format
                              queue3$extract
                              queue3$out-act
                              queue3$data-out))))

;; Extract the accepted input sequence

(seq-gen queue3 in in-act 0
         (queue3$data-in inputs data-size))

;; Extract the valid output sequence

(seq-gen queue3 out out-act 1
         (queue3$data-out st)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma queue3)