File: queue4.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (538 lines) | stat: -rw-r--r-- 17,613 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "../link-joint")
(include-book "../vector-module")

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of Q4
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of Q4
;;
;; Construct a DE module generator for a queue of four links, Q4, using the
;; link-joint model.  Prove the value and state lemmas for this module
;; generator.

(defconst *queue4$go-num* 5)

(defun queue4$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(defun queue4$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (queue4$data-ins-len data-size)
     *queue4$go-num*))

;; DE module generator of Q4

(module-generator
 queue4* (data-size)
 (si 'queue4 data-size)
 (list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
                                     (sis 'go 0 *queue4$go-num*)))
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 '(l0 l1 l2 l3)
 (list
  ;; LINKS
  ;; L0
  (list 'l0
        (list* 'l0-status (sis 'd0-out 0 data-size))
        (si 'link data-size)
        (list* 'in-act 'trans1-act (sis 'd0-in 0 data-size)))

  ;; L1
  (list 'l1
        (list* 'l1-status (sis 'd1-out 0 data-size))
        (si 'link data-size)
        (list* 'trans1-act 'trans2-act (sis 'd1-in 0 data-size)))

  ;; L2
  (list 'l2
        (list* 'l2-status (sis 'd2-out 0 data-size))
        (si 'link data-size)
        (list* 'trans2-act 'trans3-act (sis 'd2-in 0 data-size)))

  ;; L3
  (list 'l3
        (list* 'l3-status (sis 'd3-out 0 data-size))
        (si 'link data-size)
        (list* 'trans3-act 'out-act (sis 'd3-in 0 data-size)))

  ;; JOINTS
  ;; In
  (list 'in-cntl
        '(in-act)
        'joint-cntl
        (list 'full-in 'l0-status (si 'go 0)))
  (list 'in-op
        (sis 'd0-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'data-in 0 data-size))

  ;; Transfer data1
  (list 'trans1-cntl
        '(trans1-act)
        'joint-cntl
        (list 'l0-status 'l1-status (si 'go 1)))
  (list 'trans1-op
        (sis 'd1-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd0-out 0 data-size))

  ;; Transfer data2
  (list 'trans2-cntl
        '(trans2-act)
        'joint-cntl
        (list 'l1-status 'l2-status (si 'go 2)))
  (list 'trans2-op
        (sis 'd2-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd1-out 0 data-size))

  ;; Transfer data3
  (list 'trans3-cntl
        '(trans3-act)
        'joint-cntl
        (list 'l2-status 'l3-status (si 'go 3)))
  (list 'trans3-op
        (sis 'd3-in 0 data-size)
        (si 'v-buf data-size)
        (sis 'd2-out 0 data-size))

  ;; Out
  (list 'out-cntl
        '(out-act)
        'joint-cntl
        (list 'l3-status 'empty-out- (si 'go 4)))
  (list 'out-op
        (sis 'data-out 0 data-size)
        (si 'v-buf data-size)
        (sis 'd3-out 0 data-size)))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'queue4 '(l0 l1 l2 l3) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of Q4.

(defund queue4$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (queue4* data-size)
        (union$ (link$netlist data-size)
                *joint-cntl*
                (v-buf$netlist data-size)
                :test 'equal)))

;; Recognizer for Q4

(defund queue4& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'queue4 data-size) netlist)))
    (and (equal (assoc (si 'queue4 data-size) netlist)
                (queue4* data-size))
         (link& subnetlist data-size)
         (joint-cntl& subnetlist)
         (v-buf& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-queue4$netlist-64
   (and (net-syntax-okp (queue4$netlist 64))
        (net-arity-okp (queue4$netlist 64))
        (queue4& (queue4$netlist 64) 64))))

;; Constraints on the state of Q4

(defund queue4$st-format (st data-size)
  (b* ((l0 (nth *queue4$l0* st))
       (l1 (nth *queue4$l1* st))
       (l2 (nth *queue4$l2* st))
       (l3 (nth *queue4$l3* st)))
    (and (link$st-format l0 data-size)
         (link$st-format l1 data-size)
         (link$st-format l2 data-size)
         (link$st-format l3 data-size))))

(defthm queue4$st-format=>constraint
  (implies (queue4$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue4$st-format)))
  :rule-classes :forward-chaining)

(defund queue4$valid-st (st data-size)
  (b* ((l0 (nth *queue4$l0* st))
       (l1 (nth *queue4$l1* st))
       (l2 (nth *queue4$l2* st))
       (l3 (nth *queue4$l3* st)))
    (and (link$valid-st l0 data-size)
         (link$valid-st l1 data-size)
         (link$valid-st l2 data-size)
         (link$valid-st l3 data-size))))

(defthmd queue4$valid-st=>constraint
  (implies (queue4$valid-st st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable queue4$valid-st)))
  :rule-classes :forward-chaining)

(defthmd queue4$valid-st=>st-format
  (implies (queue4$valid-st st data-size)
           (queue4$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (queue4$st-format
                                   queue4$valid-st)
                                  (link$st-format)))))

;; Extract the input and output signals for Q4

(progn
  ;; Extract the input data

  (defun queue4$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-queue4$data-in
    (equal (len (queue4$data-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable queue4$data-in))

  ;; Extract the "in-act" signal

  (defund queue4$in-act (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (go-signals (nthcdr (queue4$data-ins-len data-size) inputs))
         (go-in (nth 0 go-signals))

         (l0 (nth *queue4$l0* st))
         (l0.s (nth *link$s* l0)))
      (joint-act full-in (car l0.s) go-in)))

  (defthm queue4$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (queue4$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue4$in-act))))

  ;; Extract the "out-act" signal

  (defund queue4$out-act (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (queue4$data-ins-len data-size) inputs))
         (go-out (nth 4 go-signals))

         (l3 (nth *queue4$l3* st))
         (l3.s (nth *link$s* l3)))
      (joint-act (car l3.s) empty-out- go-out)))

  (defthm queue4$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (queue4$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable queue4$out-act))))

  ;; Extract the output data

  (defund queue4$data-out (st)
    (v-threefix (strip-cars (nth *link$d*
                                 (nth *queue4$l3* st)))))

  (defthm len-queue4$data-out-1
    (implies (queue4$st-format st data-size)
             (equal (len (queue4$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue4$st-format
                                       queue4$data-out))))

  (defthm len-queue4$data-out-2
    (implies (queue4$valid-st st data-size)
             (equal (len (queue4$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable queue4$valid-st
                                       queue4$data-out))))

  (defthm bvp-queue4$data-out
    (implies (and (queue4$valid-st st data-size)
                  (queue4$out-act inputs st data-size))
             (bvp (queue4$data-out st)))
    :hints (("Goal" :in-theory (enable queue4$valid-st
                                       queue4$out-act
                                       queue4$data-out))))

  (defun queue4$outputs (inputs st data-size)
    (list* (queue4$in-act inputs st data-size)
           (queue4$out-act inputs st data-size)
           (queue4$data-out st)))
  )

;; The value lemma for Q4

(defthm queue4$value
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue4& netlist data-size)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue4$go-num*)
                  (queue4$st-format st data-size))
             (equal (se (si 'queue4 data-size) inputs st netlist)
                    (queue4$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'queue4 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue4&
                            queue4*$destructure
                            queue4$st-format
                            queue4$in-act
                            queue4$out-act
                            queue4$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of Q4.

(defun queue4$step (inputs st data-size)
  (b* ((data-in    (queue4$data-in inputs data-size))
       (go-signals (nthcdr (queue4$data-ins-len data-size) inputs))

       (go-trans1 (nth 1 go-signals))
       (go-trans2 (nth 2 go-signals))
       (go-trans3 (nth 3 go-signals))

       (l0 (nth *queue4$l0* st))
       (l0.s (nth *link$s* l0))
       (l0.d (nth *link$d* l0))
       (l1 (nth *queue4$l1* st))
       (l1.s (nth *link$s* l1))
       (l1.d (nth *link$d* l1))
       (l2 (nth *queue4$l2* st))
       (l2.s (nth *link$s* l2))
       (l2.d (nth *link$d* l2))
       (l3 (nth *queue4$l3* st))
       (l3.s (nth *link$s* l3))

       (in-act (queue4$in-act inputs st data-size))
       (out-act (queue4$out-act inputs st data-size))
       (trans1-act (joint-act (car l0.s) (car l1.s) go-trans1))
       (trans2-act (joint-act (car l1.s) (car l2.s) go-trans2))
       (trans3-act (joint-act (car l2.s) (car l3.s) go-trans3))

       (l0-inputs (list* in-act trans1-act data-in))
       (l1-inputs (list* trans1-act trans2-act (strip-cars l0.d)))
       (l2-inputs (list* trans2-act trans3-act (strip-cars l1.d)))
       (l3-inputs (list* trans3-act out-act (strip-cars l2.d))))
    (list
     ;; L0
     (link$step l0-inputs l0 data-size)
     ;; L1
     (link$step l1-inputs l1 data-size)
     ;; L2
     (link$step l2-inputs l2 data-size)
     ;; L3
     (link$step l3-inputs l3 data-size))))

;; The state lemma for Q4

(defthm queue4$state
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (queue4& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *queue4$go-num*)
                  (queue4$st-format st data-size))
             (equal (de (si 'queue4 data-size) inputs st netlist)
                    (queue4$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'queue4 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            queue4&
                            queue4*$destructure
                            queue4$st-format
                            queue4$data-in
                            queue4$in-act
                            queue4$out-act)
                           (de-module-disabled-rules)))))

(in-theory (disable queue4$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund queue4$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data-in    (queue4$data-in inputs data-size))
       (go-signals (nthcdr (queue4$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *queue4$go-num*)
     (equal inputs
            (list* full-in empty-out- (append data-in go-signals))))))

(defthm booleanp-queue4$in-act
  (implies (and (queue4$input-format inputs data-size)
                (queue4$valid-st st data-size))
           (booleanp (queue4$in-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue4$input-format
                                     queue4$valid-st
                                     queue4$in-act)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-queue4$out-act
  (implies (and (queue4$input-format inputs data-size)
                (queue4$valid-st st data-size))
           (booleanp (queue4$out-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable queue4$input-format
                                     queue4$valid-st
                                     queue4$out-act)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma queue4)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for Q4 that extracts the future output sequence from
;; the current state.

(defund queue4$extract (st)
  (b* ((l0 (nth *queue4$l0* st))
       (l1 (nth *queue4$l1* st))
       (l2 (nth *queue4$l2* st))
       (l3 (nth *queue4$l3* st)))
    (extract-valid-data (list l0 l1 l2 l3))))

(defthm queue4$extract-not-empty
  (implies (and (queue4$out-act inputs st data-size)
                (queue4$valid-st st data-size))
           (< 0 (len (queue4$extract st))))
  :hints (("Goal"
           :in-theory (e/d (queue4$valid-st
                            queue4$extract
                            queue4$out-act)
                           ())))
  :rule-classes :linear)

;; The extracted next-state function for Q4.  Note that this function avoids
;; exploring the internal computation of Q4.

(defund queue4$extracted-step (inputs st data-size)
  (b* ((data (queue4$data-in inputs data-size))
       (extracted-st (queue4$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (queue4$out-act inputs st data-size) t)
      (cond
       ((equal (queue4$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (queue4$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(defthm queue4$extracted-step-correct
  (b* ((next-st (queue4$step inputs st data-size)))
    (implies (and (queue4$input-format inputs data-size)
                  (queue4$valid-st st data-size))
             (equal (queue4$extract next-st)
                    (queue4$extracted-step inputs st data-size))))
  :hints (("Goal"
           :in-theory (enable f-sr
                              queue4$extracted-step
                              queue4$input-format
                              queue4$valid-st
                              queue4$st-format
                              queue4$step
                              queue4$in-act
                              queue4$out-act
                              queue4$extract))))

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that queue4$valid-st is an invariant.

(defthm queue4$valid-st-preserved
  (implies (and (queue4$input-format inputs data-size)
                (queue4$valid-st st data-size))
           (queue4$valid-st (queue4$step inputs st data-size)
                            data-size))
  :hints (("Goal"
           :in-theory (e/d (f-sr
                            queue4$input-format
                            queue4$valid-st
                            queue4$st-format
                            queue4$step
                            queue4$in-act
                            queue4$out-act)
                           (nfix)))))

(defthm queue4$extract-lemma
  (implies (and (queue4$valid-st st data-size)
                (queue4$out-act inputs st data-size))
           (equal (list (queue4$data-out st))
                  (nthcdr (1- (len (queue4$extract st)))
                          (queue4$extract st))))
  :hints (("Goal"
           :in-theory (enable queue4$valid-st
                              queue4$st-format
                              queue4$extract
                              queue4$out-act
                              queue4$data-out))))

;; Extract the accepted input sequence

(seq-gen queue4 in in-act 0
         (queue4$data-in inputs data-size))

;; Extract the valid output sequence

(seq-gen queue4 out out-act 1
         (queue4$data-out st)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma queue4)