1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
(in-package "ADE")
(include-book "../link-joint")
(include-book "../vector-module")
(local (in-theory (disable nth)))
;; ======================================================================
;;; Table of Contents:
;;;
;;; 1. DE Module Generator of Q5
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences
;; ======================================================================
;; 1. DE Module Generator of Q5
;;
;; Construct a DE module generator for a queue of five links, Q5, using the
;; link-joint model. Prove the value and state lemmas for this module
;; generator.
(defconst *queue5$go-num* 6)
(defun queue5$data-ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ 2 (mbe :logic (nfix data-size)
:exec data-size)))
(defun queue5$ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ (queue5$data-ins-len data-size)
*queue5$go-num*))
;; DE module generator of Q5
(module-generator
queue5* (data-size)
(si 'queue5 data-size)
(list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
(sis 'go 0 *queue5$go-num*)))
(list* 'in-act 'out-act
(sis 'data-out 0 data-size))
'(l0 l1 l2 l3 l4)
(list
;; LINKS
;; L0
(list 'l0
(list* 'l0-status (sis 'd0-out 0 data-size))
(si 'link data-size)
(list* 'in-act 'trans1-act (sis 'd0-in 0 data-size)))
;; L1
(list 'l1
(list* 'l1-status (sis 'd1-out 0 data-size))
(si 'link data-size)
(list* 'trans1-act 'trans2-act (sis 'd1-in 0 data-size)))
;; L2
(list 'l2
(list* 'l2-status (sis 'd2-out 0 data-size))
(si 'link data-size)
(list* 'trans2-act 'trans3-act (sis 'd2-in 0 data-size)))
;; L3
(list 'l3
(list* 'l3-status (sis 'd3-out 0 data-size))
(si 'link data-size)
(list* 'trans3-act 'trans4-act (sis 'd3-in 0 data-size)))
;; L4
(list 'l4
(list* 'l4-status (sis 'd4-out 0 data-size))
(si 'link data-size)
(list* 'trans4-act 'out-act (sis 'd4-in 0 data-size)))
;; JOINTS
;; In
(list 'in-cntl
'(in-act)
'joint-cntl
(list 'full-in 'l0-status (si 'go 0)))
(list 'in-op
(sis 'd0-in 0 data-size)
(si 'v-buf data-size)
(sis 'data-in 0 data-size))
;; Transfer data1
(list 'trans1-cntl
'(trans1-act)
'joint-cntl
(list 'l0-status 'l1-status (si 'go 1)))
(list 'trans1-op
(sis 'd1-in 0 data-size)
(si 'v-buf data-size)
(sis 'd0-out 0 data-size))
;; Transfer data2
(list 'trans2-cntl
'(trans2-act)
'joint-cntl
(list 'l1-status 'l2-status (si 'go 2)))
(list 'trans2-op
(sis 'd2-in 0 data-size)
(si 'v-buf data-size)
(sis 'd1-out 0 data-size))
;; Transfer data3
(list 'trans3-cntl
'(trans3-act)
'joint-cntl
(list 'l2-status 'l3-status (si 'go 3)))
(list 'trans3-op
(sis 'd3-in 0 data-size)
(si 'v-buf data-size)
(sis 'd2-out 0 data-size))
;; Transfer data4
(list 'trans4-cntl
'(trans4-act)
'joint-cntl
(list 'l3-status 'l4-status (si 'go 4)))
(list 'trans4-op
(sis 'd4-in 0 data-size)
(si 'v-buf data-size)
(sis 'd3-out 0 data-size))
;; Out
(list 'out-cntl
'(out-act)
'joint-cntl
(list 'l4-status 'empty-out- (si 'go 5)))
(list 'out-op
(sis 'data-out 0 data-size)
(si 'v-buf data-size)
(sis 'd4-out 0 data-size)))
(declare (xargs :guard (natp data-size))))
(make-event
`(progn
,@(state-accessors-gen 'queue5 '(l0 l1 l2 l3 l4) 0)))
;; DE netlist generator. A generated netlist will contain an instance of Q5.
(defund queue5$netlist (data-size)
(declare (xargs :guard (natp data-size)))
(cons (queue5* data-size)
(union$ (link$netlist data-size)
*joint-cntl*
(v-buf$netlist data-size)
:test 'equal)))
;; Recognizer for Q5
(defund queue5& (netlist data-size)
(declare (xargs :guard (and (alistp netlist)
(natp data-size))))
(b* ((subnetlist (delete-to-eq (si 'queue5 data-size) netlist)))
(and (equal (assoc (si 'queue5 data-size) netlist)
(queue5* data-size))
(link& subnetlist data-size)
(joint-cntl& subnetlist)
(v-buf& subnetlist data-size))))
;; Sanity check
(local
(defthmd check-queue5$netlist-64
(and (net-syntax-okp (queue5$netlist 64))
(net-arity-okp (queue5$netlist 64))
(queue5& (queue5$netlist 64) 64))))
;; Constraints on the state of Q5
(defund queue5$st-format (st data-size)
(b* ((l0 (nth *queue5$l0* st))
(l1 (nth *queue5$l1* st))
(l2 (nth *queue5$l2* st))
(l3 (nth *queue5$l3* st))
(l4 (nth *queue5$l4* st)))
(and (link$st-format l0 data-size)
(link$st-format l1 data-size)
(link$st-format l2 data-size)
(link$st-format l3 data-size)
(link$st-format l4 data-size))))
(defthm queue5$st-format=>constraint
(implies (queue5$st-format st data-size)
(natp data-size))
:hints (("Goal" :in-theory (enable queue5$st-format)))
:rule-classes :forward-chaining)
(defund queue5$valid-st (st data-size)
(b* ((l0 (nth *queue5$l0* st))
(l1 (nth *queue5$l1* st))
(l2 (nth *queue5$l2* st))
(l3 (nth *queue5$l3* st))
(l4 (nth *queue5$l4* st)))
(and (link$valid-st l0 data-size)
(link$valid-st l1 data-size)
(link$valid-st l2 data-size)
(link$valid-st l3 data-size)
(link$valid-st l4 data-size))))
(defthmd queue5$valid-st=>constraint
(implies (queue5$valid-st st data-size)
(natp data-size))
:hints (("Goal" :in-theory (enable queue5$valid-st)))
:rule-classes :forward-chaining)
(defthmd queue5$valid-st=>st-format
(implies (queue5$valid-st st data-size)
(queue5$st-format st data-size))
:hints (("Goal" :in-theory (e/d (queue5$st-format
queue5$valid-st)
(link$st-format)))))
;; Extract the input and output signals for Q5
(progn
;; Extract the input data
(defun queue5$data-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(take (mbe :logic (nfix data-size)
:exec data-size)
(nthcdr 2 inputs)))
(defthm len-queue5$data-in
(equal (len (queue5$data-in inputs data-size))
(nfix data-size)))
(in-theory (disable queue5$data-in))
;; Extract the "in-act" signal
(defund queue5$in-act (inputs st data-size)
(b* ((full-in (nth 0 inputs))
(go-signals (nthcdr (queue5$data-ins-len data-size) inputs))
(go-in (nth 0 go-signals))
(l0 (nth *queue5$l0* st))
(l0.s (nth *link$s* l0)))
(joint-act full-in (car l0.s) go-in)))
(defthm queue5$in-act-inactive
(implies (not (nth 0 inputs))
(not (queue5$in-act inputs st data-size)))
:hints (("Goal" :in-theory (enable queue5$in-act))))
;; Extract the "out-act" signal
(defund queue5$out-act (inputs st data-size)
(b* ((empty-out- (nth 1 inputs))
(go-signals (nthcdr (queue5$data-ins-len data-size) inputs))
(go-out (nth 5 go-signals))
(l4 (nth *queue5$l4* st))
(l4.s (nth *link$s* l4)))
(joint-act (car l4.s) empty-out- go-out)))
(defthm queue5$out-act-inactive
(implies (equal (nth 1 inputs) t)
(not (queue5$out-act inputs st data-size)))
:hints (("Goal" :in-theory (enable queue5$out-act))))
;; Extract the output data
(defund queue5$data-out (st)
(v-threefix (strip-cars (nth *link$d*
(nth *queue5$l4* st)))))
(defthm len-queue5$data-out-1
(implies (queue5$st-format st data-size)
(equal (len (queue5$data-out st))
data-size))
:hints (("Goal" :in-theory (enable queue5$st-format
queue5$data-out))))
(defthm len-queue5$data-out-2
(implies (queue5$valid-st st data-size)
(equal (len (queue5$data-out st))
data-size))
:hints (("Goal" :in-theory (enable queue5$valid-st
queue5$data-out))))
(defthm bvp-queue5$data-out
(implies (and (queue5$valid-st st data-size)
(queue5$out-act inputs st data-size))
(bvp (queue5$data-out st)))
:hints (("Goal" :in-theory (enable queue5$valid-st
queue5$out-act
queue5$data-out))))
(defun queue5$outputs (inputs st data-size)
(list* (queue5$in-act inputs st data-size)
(queue5$out-act inputs st data-size)
(queue5$data-out st)))
)
;; The value lemma for Q5
(defthm queue5$value
(b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
(implies (and (queue5& netlist data-size)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *queue5$go-num*)
(queue5$st-format st data-size))
(equal (se (si 'queue5 data-size) inputs st netlist)
(queue5$outputs inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(se (si 'queue5 data-size) inputs st netlist))
:in-theory (e/d (de-rules
queue5&
queue5*$destructure
queue5$st-format
queue5$in-act
queue5$out-act
queue5$data-out)
(de-module-disabled-rules)))))
;; This function specifies the next state of Q5.
(defun queue5$step (inputs st data-size)
(b* ((data-in (queue5$data-in inputs data-size))
(go-signals (nthcdr (queue5$data-ins-len data-size) inputs))
(go-trans1 (nth 1 go-signals))
(go-trans2 (nth 2 go-signals))
(go-trans3 (nth 3 go-signals))
(go-trans4 (nth 4 go-signals))
(l0 (nth *queue5$l0* st))
(l0.s (nth *link$s* l0))
(l0.d (nth *link$d* l0))
(l1 (nth *queue5$l1* st))
(l1.s (nth *link$s* l1))
(l1.d (nth *link$d* l1))
(l2 (nth *queue5$l2* st))
(l2.s (nth *link$s* l2))
(l2.d (nth *link$d* l2))
(l3 (nth *queue5$l3* st))
(l3.s (nth *link$s* l3))
(l3.d (nth *link$d* l3))
(l4 (nth *queue5$l4* st))
(l4.s (nth *link$s* l4))
(in-act (queue5$in-act inputs st data-size))
(out-act (queue5$out-act inputs st data-size))
(trans1-act (joint-act (car l0.s) (car l1.s) go-trans1))
(trans2-act (joint-act (car l1.s) (car l2.s) go-trans2))
(trans3-act (joint-act (car l2.s) (car l3.s) go-trans3))
(trans4-act (joint-act (car l3.s) (car l4.s) go-trans4))
(l0-inputs (list* in-act trans1-act data-in))
(l1-inputs (list* trans1-act trans2-act (strip-cars l0.d)))
(l2-inputs (list* trans2-act trans3-act (strip-cars l1.d)))
(l3-inputs (list* trans3-act trans4-act (strip-cars l2.d)))
(l4-inputs (list* trans4-act out-act (strip-cars l3.d))))
(list
;; L0
(link$step l0-inputs l0 data-size)
;; L1
(link$step l1-inputs l1 data-size)
;; L2
(link$step l2-inputs l2 data-size)
;; L3
(link$step l3-inputs l3 data-size)
;; L4
(link$step l4-inputs l4 data-size))))
;; The state lemma for Q5
(defthm queue5$state
(b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
(implies (and (queue5& netlist data-size)
(true-listp data-in)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *queue5$go-num*)
(queue5$st-format st data-size))
(equal (de (si 'queue5 data-size) inputs st netlist)
(queue5$step inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(de (si 'queue5 data-size) inputs st netlist))
:in-theory (e/d (de-rules
queue5&
queue5*$destructure
queue5$st-format
queue5$data-in
queue5$in-act
queue5$out-act)
(de-module-disabled-rules)))))
(in-theory (disable queue5$step))
;; ======================================================================
;; 2. Multi-Step State Lemma
;; Conditions on the inputs
(defund queue5$input-format (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((full-in (nth 0 inputs))
(empty-out- (nth 1 inputs))
(data-in (queue5$data-in inputs data-size))
(go-signals (nthcdr (queue5$data-ins-len data-size) inputs)))
(and
(booleanp full-in)
(booleanp empty-out-)
(or (not full-in) (bvp data-in))
(true-listp go-signals)
(= (len go-signals) *queue5$go-num*)
(equal inputs
(list* full-in empty-out- (append data-in go-signals))))))
(defthm booleanp-queue5$in-act
(implies (and (queue5$input-format inputs data-size)
(queue5$valid-st st data-size))
(booleanp (queue5$in-act inputs st data-size)))
:hints (("Goal" :in-theory (enable queue5$input-format
queue5$valid-st
queue5$in-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-queue5$out-act
(implies (and (queue5$input-format inputs data-size)
(queue5$valid-st st data-size))
(booleanp (queue5$out-act inputs st data-size)))
:hints (("Goal" :in-theory (enable queue5$input-format
queue5$valid-st
queue5$out-act)))
:rule-classes (:rewrite :type-prescription))
(simulate-lemma queue5)
;; ======================================================================
;; 3. Single-Step-Update Property
;; The extraction function for Q5 that extracts the future output sequence from
;; the current state.
(defund queue5$extract (st)
(b* ((l0 (nth *queue5$l0* st))
(l1 (nth *queue5$l1* st))
(l2 (nth *queue5$l2* st))
(l3 (nth *queue5$l3* st))
(l4 (nth *queue5$l4* st)))
(extract-valid-data (list l0 l1 l2 l3 l4))))
(defthm queue5$extract-not-empty
(implies (and (queue5$out-act inputs st data-size)
(queue5$valid-st st data-size))
(< 0 (len (queue5$extract st))))
:hints (("Goal"
:in-theory (e/d (queue5$valid-st
queue5$extract
queue5$out-act)
())))
:rule-classes :linear)
;; The extracted next-state function for Q5. Note that this function avoids
;; exploring the internal computation of Q5.
(defund queue5$extracted-step (inputs st data-size)
(b* ((data (queue5$data-in inputs data-size))
(extracted-st (queue5$extract st))
(n (1- (len extracted-st))))
(cond
((equal (queue5$out-act inputs st data-size) t)
(cond
((equal (queue5$in-act inputs st data-size) t)
(cons data (take n extracted-st)))
(t (take n extracted-st))))
(t (cond
((equal (queue5$in-act inputs st data-size) t)
(cons data extracted-st))
(t extracted-st))))))
;; The single-step-update property
(defthm queue5$extracted-step-correct
(b* ((next-st (queue5$step inputs st data-size)))
(implies (and (queue5$input-format inputs data-size)
(queue5$valid-st st data-size))
(equal (queue5$extract next-st)
(queue5$extracted-step inputs st data-size))))
:hints (("Goal"
:in-theory (enable f-sr
queue5$extracted-step
queue5$input-format
queue5$valid-st
queue5$st-format
queue5$step
queue5$in-act
queue5$out-act
queue5$extract))))
;; ======================================================================
;; 4. Relationship Between the Input and Output Sequences
;; Prove that queue5$valid-st is an invariant.
(defthm queue5$valid-st-preserved
(implies (and (queue5$input-format inputs data-size)
(queue5$valid-st st data-size))
(queue5$valid-st (queue5$step inputs st data-size)
data-size))
:hints (("Goal"
:in-theory (e/d (queue5$input-format
queue5$valid-st
queue5$st-format
queue5$step
queue5$in-act
queue5$out-act
f-sr)
(nfix)))))
(defthm queue5$extract-lemma
(implies (and (queue5$valid-st st data-size)
(queue5$out-act inputs st data-size))
(equal (list (queue5$data-out st))
(nthcdr (1- (len (queue5$extract st)))
(queue5$extract st))))
:hints (("Goal"
:in-theory (enable queue5$valid-st
queue5$st-format
queue5$extract
queue5$out-act
queue5$data-out))))
;; Extract the accepted input sequence
(seq-gen queue5 in in-act 0
(queue5$data-in inputs data-size))
;; Extract the valid output sequence
(seq-gen queue5 out out-act 1
(queue5$data-out st)
:netlist-data (nthcdr 2 outputs))
;; The multi-step input-output relationship
(in-out-stream-lemma queue5)
|