1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
(in-package "ADE")
(include-book "alt-branch")
(include-book "alt-merge")
(include-book "../store-n")
(local (include-book "arithmetic-3/top" :dir :system))
(local (in-theory (disable nth)))
;; ======================================================================
;;; Table of Contents:
;;;
;;; 1. DE Module Generator of WW
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences
;; ======================================================================
;; 1. DE Module Generator of WW
;;
;; Construct a DE module generator for wig-wag circuits using the link-joint
;; model. Prove the value and state lemmas for this module generator.
(defconst *wig-wag$go-num* (+ *alt-branch$go-num*
*alt-merge$go-num*))
(defun wig-wag$data-ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ 2 (mbe :logic (nfix data-size)
:exec data-size)))
(defun wig-wag$ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ (wig-wag$data-ins-len data-size)
*wig-wag$go-num*))
;; DE module generator of WW. The ALT-BRANCH joint in WW accepts input data
;; and places them alternately into links L0 and L1. The ALT-MERGE joint takes
;; data alternately from links L0 and L1 and delivers them as outputs.
(module-generator
wig-wag* (data-size)
(si 'wig-wag data-size)
(list* 'full-in 'empty-out- (append (sis 'data-in 0 data-size)
(sis 'go 0 *wig-wag$go-num*)))
(list* 'in-act 'out-act
(sis 'data-out 0 data-size))
'(l0 l1 br me)
(list
;; LINKS
;; L0
(list 'l0
(list* 'l0-status (sis 'd0-out 0 data-size))
(si 'link data-size)
(list* 'br-act0 'me-act0 (sis 'data 0 data-size)))
;; L1
(list 'l1
(list* 'l1-status (sis 'd1-out 0 data-size))
(si 'link data-size)
(list* 'br-act1 'me-act1 (sis 'data 0 data-size)))
;; JOINTS
;; Alt-Branch
(list 'br
(list* 'in-act 'br-act0 'br-act1
(sis 'data 0 data-size))
(si 'alt-branch data-size)
(list* 'full-in 'l0-status 'l1-status
(append (sis 'data-in 0 data-size)
(sis 'go 0 *alt-branch$go-num*))))
;; Alt-Merge
(list 'me
(list* 'out-act 'me-act0 'me-act1
(sis 'data-out 0 data-size))
(si 'alt-merge data-size)
(list* 'l0-status 'l1-status 'empty-out-
(append (sis 'd0-out 0 data-size)
(sis 'd1-out 0 data-size)
(sis 'go *alt-branch$go-num* *alt-merge$go-num*)))))
(declare (xargs :guard (natp data-size))))
(make-event
`(progn
,@(state-accessors-gen 'wig-wag '(l0 l1 br me) 0)))
;; DE netlist generator. A generated netlist will contain an instance of WW.
(defund wig-wag$netlist (data-size)
(declare (xargs :guard (natp data-size)))
(cons (wig-wag* data-size)
(union$ (link$netlist data-size)
(alt-branch$netlist data-size)
(alt-merge$netlist data-size)
:test 'equal)))
;; Recognizer for WW
(defund wig-wag& (netlist data-size)
(declare (xargs :guard (and (alistp netlist)
(natp data-size))))
(b* ((subnetlist (delete-to-eq (si 'wig-wag data-size) netlist)))
(and (equal (assoc (si 'wig-wag data-size) netlist)
(wig-wag* data-size))
(link& subnetlist data-size)
(alt-branch& subnetlist data-size)
(alt-merge& subnetlist data-size))))
;; Sanity check
(local
(defthm check-wig-wag$netlist-64
(and (net-syntax-okp (wig-wag$netlist 64))
(net-arity-okp (wig-wag$netlist 64))
(wig-wag& (wig-wag$netlist 64) 64))))
;; Constraints on the state of WW
(defund wig-wag$st-format (st data-size)
(b* ((l0 (nth *wig-wag$l0* st))
(l1 (nth *wig-wag$l1* st)))
(and (< 0 data-size)
(link$st-format l0 data-size)
(link$st-format l1 data-size))))
(defthm wig-wag$st-format=>constraint
(implies (wig-wag$st-format st data-size)
(posp data-size))
:hints (("Goal" :in-theory (enable wig-wag$st-format)))
:rule-classes :forward-chaining)
(defund wig-wag$valid-st (st data-size)
(b* ((l0 (nth *wig-wag$l0* st))
(l1 (nth *wig-wag$l1* st))
(br (nth *wig-wag$br* st))
(me (nth *wig-wag$me* st)))
(and (wig-wag$st-format st data-size)
(link$valid-st l0 data-size)
(link$valid-st l1 data-size)
(alt-branch$valid-st br)
(alt-merge$valid-st me))))
(defthmd wig-wag$valid-st=>constraint
(implies (wig-wag$valid-st st data-size)
(posp data-size))
:hints (("Goal" :in-theory (enable wig-wag$valid-st)))
:rule-classes :forward-chaining)
(defthmd wig-wag$valid-st=>st-format
(implies (wig-wag$valid-st st data-size)
(wig-wag$st-format st data-size))
:hints (("Goal" :in-theory (e/d (wig-wag$valid-st)
()))))
;; Extract the input and output signals for WW
(progn
;; Extract the input data
(defun wig-wag$data-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(take (mbe :logic (nfix data-size)
:exec data-size)
(nthcdr 2 inputs)))
(defthm len-wig-wag$data-in
(equal (len (wig-wag$data-in inputs data-size))
(nfix data-size)))
(in-theory (disable wig-wag$data-in))
;; Extract the inputs for joint ALT-BRANCH
(defund wig-wag$br-inputs (inputs st data-size)
(b* ((full-in (nth 0 inputs))
(data-in (wig-wag$data-in inputs data-size))
(go-signals (nthcdr (wig-wag$data-ins-len data-size) inputs))
(br-go-signals (take *alt-branch$go-num* go-signals))
(l0 (nth *wig-wag$l0* st))
(l0.s (nth *link$s* l0))
(l1 (nth *wig-wag$l1* st))
(l1.s (nth *link$s* l1)))
(list* full-in (f-buf (car l0.s)) (f-buf (car l1.s))
(append data-in br-go-signals))))
;; Extract the inputs for joint ALT-MERGE
(defund wig-wag$me-inputs (inputs st data-size)
(b* ((empty-out- (nth 1 inputs))
(go-signals (nthcdr (wig-wag$data-ins-len data-size) inputs))
(me-go-signals (take *alt-merge$go-num*
(nthcdr *alt-branch$go-num* go-signals)))
(l0 (nth *wig-wag$l0* st))
(l0.s (nth *link$s* l0))
(l0.d (nth *link$d* l0))
(l1 (nth *wig-wag$l1* st))
(l1.s (nth *link$s* l1))
(l1.d (nth *link$d* l1)))
(list* (f-buf (car l0.s)) (f-buf (car l1.s)) empty-out-
(append (v-threefix (strip-cars l0.d))
(v-threefix (strip-cars l1.d))
me-go-signals))))
;; Extract the "in-act" signal
(defund wig-wag$in-act (inputs st data-size)
(b* ((br-inputs (wig-wag$br-inputs inputs st data-size))
(br (nth *wig-wag$br* st)))
(alt-branch$act br-inputs br data-size)))
(defthm wig-wag$in-act-inactive
(implies (not (nth 0 inputs))
(not (wig-wag$in-act inputs st data-size)))
:hints (("Goal" :in-theory (enable wig-wag$br-inputs
wig-wag$in-act))))
;; Extract the "out-act" signal
(defund wig-wag$out-act (inputs st data-size)
(b* ((me-inputs (wig-wag$me-inputs inputs st data-size))
(me (nth *wig-wag$me* st)))
(alt-merge$act me-inputs me data-size)))
(defthm wig-wag$out-act-inactive
(implies (equal (nth 1 inputs) t)
(not (wig-wag$out-act inputs st data-size)))
:hints (("Goal" :in-theory (enable wig-wag$me-inputs
wig-wag$out-act))))
;; Extract the output data
(defund wig-wag$data-out (st)
(b* ((l0 (nth *wig-wag$l0* st))
(l0.d (nth *link$d* l0))
(l1 (nth *wig-wag$l1* st))
(l1.d (nth *link$d* l1))
(me (nth *wig-wag$me* st))
(me-select (nth *alt-merge$select* me))
(me-select.d (nth *link1$d* me-select)))
(fv-if (car me-select.d)
(strip-cars l1.d)
(strip-cars l0.d))))
(defthm len-wig-wag$data-out-1
(implies (wig-wag$st-format st data-size)
(equal (len (wig-wag$data-out st))
data-size))
:hints (("Goal" :in-theory (enable wig-wag$st-format
wig-wag$data-out))))
(defthm len-wig-wag$data-out-2
(implies (wig-wag$valid-st st data-size)
(equal (len (wig-wag$data-out st))
data-size))
:hints (("Goal" :in-theory (enable wig-wag$valid-st
wig-wag$data-out))))
(defthm bvp-wig-wag$data-out
(implies (and (wig-wag$valid-st st data-size)
(wig-wag$out-act inputs st data-size))
(bvp (wig-wag$data-out st)))
:hints (("Goal" :in-theory (enable f-and3
f-and
joint-act
wig-wag$valid-st
wig-wag$st-format
wig-wag$out-act
wig-wag$data-out
wig-wag$me-inputs
alt-merge$valid-st
alt-merge$act
alt-merge$act0
alt-merge$act1))))
(defun wig-wag$outputs (inputs st data-size)
(list* (wig-wag$in-act inputs st data-size)
(wig-wag$out-act inputs st data-size)
(wig-wag$data-out st)))
)
;; The value lemma for WW
(defthm wig-wag$value
(b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
(implies (and (wig-wag& netlist data-size)
(true-listp data-in)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *wig-wag$go-num*)
(wig-wag$st-format st data-size))
(equal (se (si 'wig-wag data-size) inputs st netlist)
(wig-wag$outputs inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(se (si 'wig-wag data-size) inputs st netlist))
:in-theory (e/d (de-rules
wig-wag&
wig-wag*$destructure
wig-wag$data-in
wig-wag$st-format
wig-wag$in-act
wig-wag$out-act
wig-wag$data-out
wig-wag$br-inputs
wig-wag$me-inputs)
(de-module-disabled-rules)))))
;; This function specifies the next state of WW.
(defun wig-wag$step (inputs st data-size)
(b* ((data-in (wig-wag$data-in inputs data-size))
(l0 (nth *wig-wag$l0* st))
(l1 (nth *wig-wag$l1* st))
(br (nth *wig-wag$br* st))
(me (nth *wig-wag$me* st))
(br-inputs (wig-wag$br-inputs inputs st data-size))
(me-inputs (wig-wag$me-inputs inputs st data-size))
(br-act0 (alt-branch$act0 br-inputs br data-size))
(br-act1 (alt-branch$act1 br-inputs br data-size))
(me-act0 (alt-merge$act0 me-inputs me data-size))
(me-act1 (alt-merge$act1 me-inputs me data-size))
(l0-inputs (list* br-act0 me-act0 data-in))
(l1-inputs (list* br-act1 me-act1 data-in)))
(list
;; L0
(link$step l0-inputs l0 data-size)
;; L1
(link$step l1-inputs l1 data-size)
;; Joint ALT-BRANCH
(alt-branch$step br-inputs br data-size)
;; Joint ALT-MERGE
(alt-merge$step me-inputs me data-size))))
;; The state lemma for WW
(defthm wig-wag$state
(b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
(implies (and (wig-wag& netlist data-size)
(true-listp data-in)
(equal (len data-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *wig-wag$go-num*)
(wig-wag$st-format st data-size))
(equal (de (si 'wig-wag data-size) inputs st netlist)
(wig-wag$step inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(de (si 'wig-wag data-size) inputs st netlist))
:in-theory (e/d (de-rules
wig-wag&
wig-wag*$destructure
wig-wag$st-format
wig-wag$data-in
wig-wag$br-inputs
wig-wag$me-inputs)
(de-module-disabled-rules)))))
(in-theory (disable wig-wag$step))
;; ======================================================================
;; 2. Multi-Step State Lemma
;; Conditions on the inputs
(defund wig-wag$input-format (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((full-in (nth 0 inputs))
(empty-out- (nth 1 inputs))
(data-in (wig-wag$data-in inputs data-size))
(go-signals (nthcdr (wig-wag$data-ins-len data-size) inputs)))
(and
(booleanp full-in)
(booleanp empty-out-)
(or (not full-in) (bvp data-in))
(true-listp go-signals)
(= (len go-signals) *wig-wag$go-num*)
(equal inputs
(list* full-in empty-out- (append data-in go-signals))))))
(local
(defthm wig-wag$input-format=>br$input-format
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size))
(alt-branch$input-format
(wig-wag$br-inputs inputs st data-size)
data-size))
:hints (("Goal"
:in-theory (e/d (wig-wag$input-format
alt-branch$input-format
alt-branch$data-in
wig-wag$valid-st
wig-wag$st-format
wig-wag$br-inputs)
())))))
(local
(defthm wig-wag$input-format=>me$input-format
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size))
(alt-merge$input-format
(wig-wag$me-inputs inputs st data-size)
data-size))
:hints (("Goal"
:in-theory (e/d (wig-wag$input-format
alt-merge$input-format
alt-merge$data0-in
alt-merge$data1-in
wig-wag$valid-st
wig-wag$st-format
wig-wag$me-inputs)
())))))
(defthm booleanp-wig-wag$in-act
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size))
(booleanp (wig-wag$in-act inputs st data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$valid-st
wig-wag$in-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-wig-wag$out-act
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size))
(booleanp (wig-wag$out-act inputs st data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$valid-st
wig-wag$out-act)))
:rule-classes (:rewrite :type-prescription))
(simulate-lemma wig-wag)
;; ======================================================================
;; 3. Single-Step-Update Property
;; The extraction function for WW that extracts the future output sequence from
;; the current state.
(defund wig-wag$extract (st)
(b* ((l0 (nth *wig-wag$l0* st))
(l1 (nth *wig-wag$l1* st))
(me (nth *wig-wag$me* st))
(me-select (nth *alt-merge$select* me))
(me-select.s (nth *link1$s* me-select))
(me-select.d (nth *link1$d* me-select))
(me-select-buf (nth *alt-merge$select-buf* me))
(me-select-buf.d (nth *link1$d* me-select-buf))
(valid-me-select (if (fullp me-select.s)
(car me-select.d)
(car me-select-buf.d))))
(if valid-me-select
(extract-valid-data (list l0 l1))
(extract-valid-data (list l1 l0)))))
(defthm wig-wag$extract-not-empty
(implies (and (wig-wag$out-act inputs st data-size)
(wig-wag$valid-st st data-size))
(< 0 (len (wig-wag$extract st))))
:hints (("Goal"
:in-theory (e/d (f-and3
alt-merge$act
alt-merge$act0
alt-merge$act1
wig-wag$me-inputs
wig-wag$valid-st
wig-wag$extract
wig-wag$out-act)
())))
:rule-classes :linear)
;; Specify and prove a state invariant
(progn
(defund wig-wag$inv (st)
(b* ((l0 (nth *wig-wag$l0* st))
(l0.s (nth *link$s* l0))
(l1 (nth *wig-wag$l1* st))
(l1.s (nth *link$s* l1))
(br (nth *wig-wag$br* st))
(me (nth *wig-wag$me* st))
(br-select (nth *alt-branch$select* br))
(br-select.s (nth *link1$s* br-select))
(br-select.d (nth *link1$d* br-select))
(br-select-buf (nth *alt-branch$select-buf* br))
(br-select-buf.d (nth *link1$d* br-select-buf))
(valid-br-select (if (fullp br-select.s)
(car br-select.d)
(car br-select-buf.d)))
(me-select (nth *alt-merge$select* me))
(me-select.s (nth *link1$s* me-select))
(me-select.d (nth *link1$d* me-select))
(me-select-buf (nth *alt-merge$select-buf* me))
(me-select-buf.d (nth *link1$d* me-select-buf))
(valid-me-select (if (fullp me-select.s)
(car me-select.d)
(car me-select-buf.d))))
(and (alt-branch$inv br)
(alt-merge$inv me)
(or (and (equal l0.s l1.s)
(equal valid-br-select valid-me-select))
(and (fullp l0.s)
(emptyp l1.s)
valid-br-select
(not valid-me-select))
(and (emptyp l0.s)
(fullp l1.s)
(not valid-br-select)
valid-me-select)))))
(local
(defthm wig-wag$input-format-lemma-1
(implies (wig-wag$input-format inputs data-size)
(booleanp (nth 0 inputs)))
:hints (("Goal" :in-theory (enable wig-wag$input-format)))
:rule-classes (:rewrite :type-prescription)))
(local
(defthm wig-wag$input-format-lemma-2
(implies (wig-wag$input-format inputs data-size)
(booleanp (nth 1 inputs)))
:hints (("Goal" :in-theory (enable wig-wag$input-format)))
:rule-classes (:rewrite :type-prescription)))
(local
(defthm wig-wag$input-format-lemma-3
(implies (and (wig-wag$input-format inputs data-size)
(nth 0 inputs))
(bvp (wig-wag$data-in inputs data-size)))
:hints (("Goal" :in-theory (enable wig-wag$input-format)))))
(defthm wig-wag$inv-preserved
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size)
(wig-wag$inv st))
(wig-wag$inv (wig-wag$step inputs st data-size)))
:hints (("Goal"
:in-theory (e/d (f-sr
wig-wag$valid-st
wig-wag$inv
wig-wag$step
wig-wag$in-act
wig-wag$out-act
wig-wag$br-inputs
wig-wag$me-inputs
alt-branch$valid-st
alt-branch$inv
alt-branch$step
alt-branch$act
alt-branch$act0
alt-branch$act1
alt-merge$valid-st
alt-merge$inv
alt-merge$step
alt-merge$act
alt-merge$act0
alt-merge$act1)
()))))
)
;; The extracted next-state function for WW. Note that this function avoids
;; exploring the internal computation of WW.
(defund wig-wag$extracted-step (inputs st data-size)
(b* ((data (wig-wag$data-in inputs data-size))
(extracted-st (wig-wag$extract st))
(n (1- (len extracted-st))))
(cond
((equal (wig-wag$out-act inputs st data-size) t)
(cond
((equal (wig-wag$in-act inputs st data-size) t)
(cons data (take n extracted-st)))
(t (take n extracted-st))))
(t (cond
((equal (wig-wag$in-act inputs st data-size) t)
(cons data extracted-st))
(t extracted-st))))))
;; The single-step-update property
(defthm wig-wag$extracted-step-correct
(b* ((next-st (wig-wag$step inputs st data-size)))
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size)
(wig-wag$inv st))
(equal (wig-wag$extract next-st)
(wig-wag$extracted-step inputs st data-size))))
:hints (("Goal"
:in-theory (e/d (f-sr
joint-act
wig-wag$extracted-step
wig-wag$valid-st
wig-wag$inv
wig-wag$step
wig-wag$in-act
wig-wag$out-act
wig-wag$extract
wig-wag$br-inputs
wig-wag$me-inputs
alt-branch$valid-st
alt-branch$inv
alt-branch$act
alt-branch$act0
alt-branch$act1
alt-merge$valid-st
alt-merge$inv
alt-merge$step
alt-merge$act
alt-merge$act0
alt-merge$act1)
()))))
;; ======================================================================
;; 4. Relationship Between the Input and Output Sequences
;; Prove that wig-wag$valid-st is an invariant.
(encapsulate
()
(local
(defthm wig-wag$br-act0-inactive
(implies (equal (nth *link$s*
(nth *wig-wag$l0* st))
'(t))
(not (alt-branch$act0
(wig-wag$br-inputs inputs st data-size)
(nth *wig-wag$br* st)
data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$br-inputs)))))
(local
(defthm wig-wag$br-act1-inactive
(implies (equal (nth *link$s*
(nth *wig-wag$l1* st))
'(t))
(not (alt-branch$act1
(wig-wag$br-inputs inputs st data-size)
(nth *wig-wag$br* st)
data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$br-inputs)))))
(local
(defthm wig-wag$me-act0-inactive
(implies (equal (nth *link$s*
(nth *wig-wag$l0* st))
'(nil))
(not (alt-merge$act0
(wig-wag$me-inputs inputs st data-size)
(nth *wig-wag$me* st)
data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$me-inputs)))))
(local
(defthm wig-wag$me-act1-inactive
(implies (equal (nth *link$s*
(nth *wig-wag$l1* st))
'(nil))
(not (alt-merge$act1
(wig-wag$me-inputs inputs st data-size)
(nth *wig-wag$me* st)
data-size)))
:hints (("Goal"
:in-theory (enable wig-wag$me-inputs)))))
(local
(defthm wig-wag$br-acts-inactive
(b* ((br-inputs (wig-wag$br-inputs inputs st data-size))
(br (nth *wig-wag$br* st)))
(implies (not (nth 0 inputs))
(and (not (alt-branch$act0 br-inputs br data-size))
(not (alt-branch$act1 br-inputs br data-size)))))
:hints (("Goal" :in-theory (enable wig-wag$br-inputs)))))
(defthm wig-wag$valid-st-preserved
(implies (and (wig-wag$input-format inputs data-size)
(wig-wag$valid-st st data-size))
(wig-wag$valid-st (wig-wag$step inputs st data-size)
data-size))
:hints (("Goal"
:use (wig-wag$input-format=>br$input-format
wig-wag$input-format=>me$input-format)
:in-theory (e/d (f-sr
wig-wag$input-format
wig-wag$valid-st
wig-wag$st-format
wig-wag$step)
(wig-wag$input-format=>br$input-format
wig-wag$input-format=>me$input-format)))))
)
(defthm wig-wag$extract-lemma
(implies (and (wig-wag$valid-st st data-size)
(wig-wag$out-act inputs st data-size))
(equal (list (wig-wag$data-out st))
(nthcdr (1- (len (wig-wag$extract st)))
(wig-wag$extract st))))
:hints (("Goal"
:do-not-induct t
:in-theory (enable f-and3
f-and
joint-act
wig-wag$valid-st
wig-wag$extract
wig-wag$out-act
wig-wag$data-out
wig-wag$me-inputs
alt-merge$valid-st
alt-merge$act
alt-merge$act0
alt-merge$act1))))
;; Extract the accepted input sequence
(seq-gen wig-wag in in-act 0
(wig-wag$data-in inputs data-size))
;; Extract the valid output sequence
(seq-gen wig-wag out out-act 1
(wig-wag$data-out st)
:netlist-data (nthcdr 2 outputs))
;; The multi-step input-output relationship
(in-out-stream-lemma wig-wag :inv t)
|