File: gcd1.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (827 lines) | stat: -rw-r--r-- 30,013 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "gcd-body1")
(include-book "gcd-cond")
(include-book "gcd-spec")

(local (include-book "arithmetic-3/top" :dir :system))

(local (in-theory (disable nth)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of GCD1
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of GCD1
;;
;; Construct a DE module generator that computes the Greatest Common Divisor
;; (GCD1) of two natural numbers.  Prove the value and state lemmas for this
;; module generator.  We follow the link-joint model in building this
;; generator.

(defconst *gcd1$go-num* (+ *merge$go-num*
                          *gcd-cond$go-num*
                          *gcd-body1$go-num*))

(defun gcd1$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (* 2 (mbe :logic (nfix data-size)
                 :exec  data-size))))

(defun gcd1$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (gcd1$data-ins-len data-size)
     *gcd1$go-num*))

;; DE module generator of GCD1

(module-generator
 gcd1* (data-size)
 ;; MODULE'S NAME
 (si 'gcd1 data-size)
 ;; INPUTS
 ;; There are 3 types of inputs for a complex joint:
 ;; * full-in and empty-out- signals,
 ;; * input data,
 ;; * GO signals.
 (list* 'full-in 'empty-out- (append (sis 'data-in 0 (* 2 data-size))
                                     (sis 'go 0 *gcd1$go-num*)))
 ;; OUTPUTS
 ;; For a complex joint, in addition to outputing the data, we also report the
 ;; "act" signals from the joints at the module's input and output ports.
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 ;; INTERNAL STATE
 '(s l0 l1 l2)
 ;; OCCURRENCES
 ;; Our DE description of a self-timed module allows links and joints to appear
 ;; in any order in the module's occurrence list, except that LINKS MUST BE
 ;; DECLARED BEFORE JOINTS so that when the module is being evaluated, the "se"
 ;; function called in the first pass will extract the links' full/empty states
 ;; and data and provide these values as inputs for the corresponding joints;
 ;; the "de" function wil make the second pass to update the link's full/empty
 ;; states and data using the joints' output values calculated from the first
 ;; pass.
 (list
  ;; LINKS
  ;; S
  '(s (s-status s-out)
      link1
      (branch-act merge-act done-))

  ;; L0
  (list 'l0
        (list* 'l0-status (sis 'd0-out 0 (* 2 data-size)))
        (si 'link (* 2 data-size))
        (list* 'merge-act 'branch-act (sis 'd0-in 0 (* 2 data-size))))

  ;; L1
  (list 'l1
        (list* 'l1-status (sis 'd1-out 0 (* 2 data-size)))
        (si 'link (* 2 data-size))
        (list* 'branch-act1 'body-act (sis 'd1-in 0 (* 2 data-size))))

  ;; L2
  (list 'l2
        (list* 'l2-status (sis 'd2-out 0 (* 2 data-size)))
        (si 'link (* 2 data-size))
        (list* 'body-act 'merge-act1 (sis 'd2-in 0 (* 2 data-size))))

  ;; JOINTS
  ;; Merge-in
  '(me-ready-in0 (me-full-in0) b-and (full-in s-status))
  '(me-ready-in1 (me-full-in1) b-and (l2-status s-status))
  (list 'me
        (list* 'merge-act 'in-act 'merge-act1
               (sis 'd0-in 0 (* 2 data-size)))
        (si 'merge (* 2 data-size))
        (list* 'me-full-in0 'me-full-in1 'l0-status 's-out
               (append (sis 'data-in 0 (* 2 data-size))
                       (sis 'd2-out 0 (* 2 data-size))
                       (sis 'go 0 *merge$go-num*))))

  ;; Branch-out
  '(br-ready-out0 (br-empty-out0-) b-or (empty-out- s-status))
  '(br-ready-out1 (br-empty-out1-) b-or (l1-status s-status))
  (list 'branch-out
        (list* 'branch-act 'out-act 'branch-act1 'done-
               (append (sis 'data-out 0 data-size)
                       (sis 'd1-in 0 (* 2 data-size))))
        (si 'gcd-cond data-size)
        (list* 'l0-status 'br-empty-out0- 'br-empty-out1-
               (append (sis 'd0-out 0 (* 2 data-size))
                       (sis 'go *merge$go-num* *gcd-cond$go-num*))))

  ;; Body
  (list 'body
        (list* 'body-act
               (sis 'd2-in 0 (* 2 data-size)))
        (si 'gcd-body1 data-size)
        (list* 'l1-status 'l2-status
               (append (sis 'd1-out 0 (* 2 data-size))
                       (sis 'go
                            (+ *merge$go-num*
                               *gcd-cond$go-num*)
                            *gcd-body1$go-num*)))))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'gcd1 '(s l0 l1 l2) 0)))

;; DE netlist generator.  A generated netlist will contain an instance of GCD1.

(defund gcd1$netlist (data-size)
  (declare (xargs :guard (and (natp data-size)
                              (<= 2 data-size))))
  (cons (gcd1* data-size)
        (union$ (link1$netlist)
                (link$netlist (* 2 data-size))
                (gcd-cond$netlist data-size)
                (gcd-body1$netlist data-size)
                :test 'equal)))

;; Recognizer for GCD1

(defund gcd1& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size)
                              (<= 2 data-size))))
  (b* ((subnetlist (delete-to-eq (si 'gcd1 data-size) netlist)))
    (and (equal (assoc (si 'gcd1 data-size) netlist)
                (gcd1* data-size))
         (link1& subnetlist)
         (link& subnetlist (* 2 data-size))
         (gcd-cond& subnetlist data-size)
         (gcd-body1& subnetlist data-size)
         (merge& subnetlist (* 2 data-size)))))

;; Sanity check

(local
 (defthmd check-gcd1$netlist-64
   (and (net-syntax-okp (gcd1$netlist 64))
        (net-arity-okp (gcd1$netlist 64))
        (gcd1& (gcd1$netlist 64) 64))))

;; Constraints on the state of GCD1

(defund gcd1$st-format (st data-size)
  (b* ((l0 (nth *gcd1$l0* st))
       (l1 (nth *gcd1$l1* st))
       (l2 (nth *gcd1$l2* st)))
    (and (natp data-size)
         (<= 3 data-size)
         (link$st-format l0 (* 2 data-size))
         (link$st-format l1 (* 2 data-size))
         (link$st-format l2 (* 2 data-size)))))

(defthm gcd1$st-format=>constraint
  (implies (gcd1$st-format st data-size)
           (and (natp data-size)
                (<= 3 data-size)))
  :hints (("Goal" :in-theory (enable gcd1$st-format)))
  :rule-classes :forward-chaining)

(defund gcd1$valid-st (st data-size)
  (b* ((s  (nth *gcd1$s* st))
       (l0 (nth *gcd1$l0* st))
       (l1 (nth *gcd1$l1* st))
       (l2 (nth *gcd1$l2* st)))
    (and (gcd1$st-format st data-size)
         (link1$valid-st s)
         (link$valid-st l0 (* 2 data-size))
         (link$valid-st l1 (* 2 data-size))
         (link$valid-st l2 (* 2 data-size)))))

(defthmd gcd1$valid-st=>constraint
  (implies (gcd1$valid-st st data-size)
           (and (natp data-size)
                (<= 3 data-size)))
  :hints (("Goal" :in-theory (enable gcd1$valid-st)))
  :rule-classes :forward-chaining)

(defthmd gcd1$valid-st=>st-format
  (implies (gcd1$valid-st st data-size)
           (gcd1$st-format st data-size))
  :hints (("Goal" :in-theory (e/d (gcd1$valid-st)
                                  ()))))

;; Extract the input and output signals for GCD1

(progn
  ;; Extract the input data

  (defun gcd1$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (* 2 (mbe :logic (nfix data-size)
                    :exec  data-size))
          (nthcdr 2 inputs)))

  (defthm len-gcd1$data-in
    (equal (len (gcd1$data-in inputs data-size))
           (* 2 (nfix data-size))))

  (in-theory (disable gcd1$data-in))

  ;; Extract the inputs for the merge-in joint

  (defund gcd1$me-inputs (inputs st data-size)
    (b* ((full-in (nth 0 inputs))
         (data-in (gcd1$data-in inputs data-size))
         (go-signals (nthcdr (gcd1$data-ins-len data-size) inputs))

         (me-go-signals (take *merge$go-num* go-signals))

         (s (nth *gcd1$s* st))
         (s.s (nth *link1$s* s))
         (s.d (nth *link1$d* s))
         (l0 (nth *gcd1$l0* st))
         (l0.s (nth *link$s* l0))
         (l2 (nth *gcd1$l2* st))
         (l2.s (nth *link$s* l2))
         (l2.d (nth *link$d* l2))

         (me-full-in0 (f-and full-in (car s.s)))
         (me-full-in1 (f-and (car l2.s) (car s.s))))

      (list* me-full-in0 me-full-in1 (car l0.s) (car s.d)
             (append data-in
                     (v-threefix (strip-cars l2.d))
                     me-go-signals))))

  ;; Extract the inputs for the branch-out joint

  (defund gcd1$br-inputs (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (gcd1$data-ins-len data-size) inputs))

         (br-go-signals (take *gcd-cond$go-num*
                              (nthcdr *merge$go-num* go-signals)))

         (s (nth *gcd1$s* st))
         (s.s (nth *link1$s* s))
         (l0 (nth *gcd1$l0* st))
         (l0.s (nth *link$s* l0))
         (l0.d (nth *link$d* l0))
         (l1 (nth *gcd1$l1* st))
         (l1.s (nth *link$s* l1))

         (br-empty-out0- (f-or empty-out- (car s.s)))
         (br-empty-out1- (f-or (car l1.s) (car s.s))))

      (list* (f-buf (car l0.s)) br-empty-out0- br-empty-out1-
             (append (v-threefix (strip-cars l0.d))
                     br-go-signals))))

  ;; Extract the inputs for the "body" joint

  (defund gcd1$body-inputs (inputs st data-size)
    (b* ((go-signals (nthcdr (gcd1$data-ins-len data-size) inputs))

         (body-go-signals (take *gcd-body1$go-num*
                                (nthcdr (+ *merge$go-num*
                                           *gcd-cond$go-num*)
                                        go-signals)))

         (l1 (nth *gcd1$l1* st))
         (l1.s (nth *link$s* l1))
         (l1.d (nth *link$d* l1))
         (l2 (nth *gcd1$l2* st))
         (l2.s (nth *link$s* l2)))

      (list* (f-buf (car l1.s)) (f-buf (car l2.s))
             (append (v-threefix (strip-cars l1.d))
                     body-go-signals))))

  ;; Extract the "in-act" signal

  (defund gcd1$in-act (inputs st data-size)
    (merge$act0 (gcd1$me-inputs inputs st data-size)
                (* 2 data-size)))

  (defthm gcd1$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (gcd1$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable gcd1$me-inputs
                                       gcd1$in-act))))

  ;; Extract the "out-act" signal

  (defund gcd1$out-act (inputs st data-size)
    (gcd-cond$act0 (gcd1$br-inputs inputs st data-size)
                   data-size))

  (defthm gcd1$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (gcd1$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable gcd1$br-inputs
                                       gcd1$out-act))))

  ;; Extract the output data

  (defund gcd1$data-out (inputs st data-size)
    (gcd-cond$data0-out (gcd1$br-inputs inputs st data-size)
                        data-size))

  (defthm len-gcd1$data-out-1
    (implies (gcd1$st-format st data-size)
             (equal (len (gcd1$data-out inputs st data-size))
                    data-size))
    :hints (("Goal" :in-theory (enable gcd1$st-format
                                       gcd1$data-out))))

  (defthm len-gcd1$data-out-2
    (implies (gcd1$valid-st st data-size)
             (equal (len (gcd1$data-out inputs st data-size))
                    data-size))
    :hints (("Goal" :in-theory (enable gcd1$valid-st
                                       gcd1$data-out))))

  (defthm bvp-gcd1$data-out
    (implies (and (gcd1$valid-st st data-size)
                  (gcd1$out-act inputs st data-size))
             (bvp (gcd1$data-out inputs st data-size)))
    :hints (("Goal" :in-theory (enable gcd1$valid-st
                                       gcd1$out-act
                                       gcd1$data-out
                                       gcd1$br-inputs
                                       gcd-cond$br-inputs
                                       gcd-cond$act0
                                       gcd-cond$data-in
                                       branch$act0))))

  (defun gcd1$outputs (inputs st data-size)
    (list* (gcd1$in-act inputs st data-size)
           (gcd1$out-act inputs st data-size)
           (gcd1$data-out inputs st data-size)))
  )

;; The value lemma for GCD1

(defthm gcd1$value
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (gcd1& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) (* 2 data-size))
                  (true-listp go-signals)
                  (equal (len go-signals) *gcd1$go-num*)
                  (gcd1$st-format st data-size))
             (equal (se (si 'gcd1 data-size) inputs st netlist)
                    (gcd1$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'gcd1 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            gcd1&
                            gcd1*$destructure
                            gcd1$data-in
                            merge$act0
                            gcd1$st-format
                            gcd1$in-act
                            gcd1$out-act
                            gcd1$data-out
                            gcd1$br-inputs
                            gcd1$me-inputs)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of GCD1.

(defun gcd1$step (inputs st data-size)
  (b* ((data-in (gcd1$data-in inputs data-size))

       (s (nth *gcd1$s* st))
       (s.d (nth *link1$d* s))
       (l0 (nth *gcd1$l0* st))
       (l1 (nth *gcd1$l1* st))
       (l2 (nth *gcd1$l2* st))
       (l2.d (nth *link$d* l2))

       (me-inputs (gcd1$me-inputs inputs st data-size))
       (br-inputs (gcd1$br-inputs inputs st data-size))
       (body-inputs (gcd1$body-inputs inputs st data-size))

       (d1-in (gcd-cond$data1-out br-inputs data-size))
       (d2-in (gcd-body1$data-out body-inputs data-size))

       (done- (gcd-cond$flag br-inputs data-size))
       (merge-act1 (merge$act1 me-inputs (* 2 data-size)))
       (merge-act (merge$act me-inputs (* 2 data-size)))
       (branch-act1 (gcd-cond$act1 br-inputs data-size))
       (branch-act (gcd-cond$act br-inputs data-size))
       (body-act (gcd-body1$act body-inputs data-size))

       (s-inputs (list branch-act merge-act done-))
       (l0-inputs (list* merge-act branch-act
                         (fv-if (car s.d) (strip-cars l2.d) data-in)))
       (l1-inputs (list* branch-act1 body-act d1-in))
       (l2-inputs (list* body-act merge-act1 d2-in)))
    (list
     ;; S
     (link1$step s-inputs s)
     ;; L0
     (link$step l0-inputs l0 (* 2 data-size))
     ;; L1
     (link$step l1-inputs l1 (* 2 data-size))
     ;; L2
     (link$step l2-inputs l2 (* 2 data-size)))))

;; The state lemma for GCD1

(defthm gcd1$state
  (b* ((inputs (list* full-in empty-out- (append data-in go-signals))))
    (implies (and (gcd1& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) (* 2 data-size))
                  (true-listp go-signals)
                  (equal (len go-signals) *gcd1$go-num*)
                  (gcd1$st-format st data-size))
             (equal (de (si 'gcd1 data-size) inputs st netlist)
                    (gcd1$step inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'gcd1 data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            gcd1&
                            gcd1*$destructure
                            merge$act
                            merge$act0
                            merge$act1
                            gcd1$st-format
                            gcd1$data-in
                            gcd1$data-out
                            gcd1$br-inputs
                            gcd1$me-inputs
                            gcd1$body-inputs)
                           (de-module-disabled-rules)))))

(in-theory (disable gcd1$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund gcd1$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data-in    (gcd1$data-in inputs data-size))
       (go-signals (nthcdr (gcd1$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in) (bvp data-in))
     (true-listp go-signals)
     (= (len go-signals) *gcd1$go-num*)
     (equal inputs
            (list* full-in empty-out- (append data-in go-signals))))))

(defthm booleanp-gcd1$in-act
  (implies (and (gcd1$input-format inputs data-size)
                (gcd1$valid-st st data-size))
           (booleanp (gcd1$in-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable merge$act0
                                     gcd1$input-format
                                     gcd1$valid-st
                                     gcd1$in-act
                                     gcd1$me-inputs)))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-gcd1$out-act
  (implies (and (gcd1$input-format inputs data-size)
                (gcd1$valid-st st data-size))
           (booleanp (gcd1$out-act inputs st data-size)))
  :hints (("Goal" :in-theory (enable branch$act0
                                     gcd-cond$act0
                                     gcd-cond$br-inputs
                                     gcd-cond$flag
                                     gcd-cond$data-in
                                     gcd1$input-format
                                     gcd1$valid-st
                                     gcd1$out-act
                                     gcd1$br-inputs)))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma gcd1)

;; ======================================================================

;; 3. Single-Step-Update Property

;; The extraction function for GCD1 that extracts the future output sequence
;; from the current state.

(defund gcd1$extract (st)
  (b* ((l0 (nth *gcd1$l0* st))
       (l1 (nth *gcd1$l1* st))
       (l2 (nth *gcd1$l2* st)))
    (gcd$op-map
     (extract-valid-data (list l1 l2 l0)))))

(defthm gcd1$extract-not-empty
  (implies (and (gcd1$out-act inputs st data-size)
                (gcd1$valid-st st data-size))
           (< 0 (len (gcd1$extract st))))
  :hints (("Goal"
           :in-theory (e/d (branch$act0
                            gcd-cond$br-inputs
                            gcd-cond$act0
                            gcd1$valid-st
                            gcd1$extract
                            gcd1$br-inputs
                            gcd1$out-act)
                           ())))
  :rule-classes :linear)

;; Specify and prove a state invariant

(progn
  (defund gcd1$inv (st)
    (b* ((s (nth *gcd1$s* st))
         (s.s (nth *link1$s* s))
         (s.d (nth *link1$d* s)))
      (if (and (fullp s.s) (not (car s.d)))
          (= (len (gcd1$extract st))
             0)
        (= (len (gcd1$extract st))
           1))))

  (local
   (defthm gcd1$input-format-lemma-1
     (implies (gcd1$input-format inputs data-size)
              (booleanp (nth 0 inputs)))
     :hints (("Goal" :in-theory (enable gcd1$input-format)))
     :rule-classes (:rewrite :type-prescription)))

  (local
   (defthm gcd1$input-format-lemma-2
     (implies (gcd1$input-format inputs data-size)
              (booleanp (nth 1 inputs)))
     :hints (("Goal" :in-theory (enable gcd1$input-format)))
     :rule-classes (:rewrite :type-prescription)))

  (local
   (defthm gcd1$input-format-lemma-3
     (implies (and (gcd1$input-format inputs data-size)
                   (nth 0 inputs))
              (bvp (gcd1$data-in inputs data-size)))
     :hints (("Goal" :in-theory (enable gcd1$input-format)))))

  (local
   (defthm booleanp-gcd1$body-act
     (b* ((body-inputs (gcd1$body-inputs inputs st data-size))
          (l1 (nth *gcd1$l1* st))
          (l1.d (nth *link$d* l1)))
       (implies (or (equal (nth *link$s*
                                (nth *gcd1$l1* st))
                           '(nil))
                    (and (equal (nth *link$s*
                                     (nth *gcd1$l1* st))
                                '(t))
                         (equal (nth *link$s*
                                     (nth *gcd1$l2* st))
                                '(nil))
                         (equal (len l1.d) (* 2 data-size))
                         (bvp (strip-cars l1.d))))
                (booleanp (gcd-body1$act body-inputs data-size))))
     :hints (("Goal" :in-theory (enable merge$act0
                                        merge$act1
                                        merge$act
                                        gcd-body1$data-in
                                        gcd-body1$me-inputs
                                        gcd-body1$act
                                        gcd-body1$a<b
                                        gcd1$body-inputs)))
     :rule-classes (:rewrite :type-prescription)))

  (local
   (defthm gcd1$body-act-inactive
     (b* ((body-inputs (gcd1$body-inputs inputs st data-size)))
       (implies (or (equal (nth *link$s*
                                (nth *gcd1$l1* st))
                           '(nil))
                    (equal (nth *link$s*
                                (nth *gcd1$l2* st))
                           '(t)))
                (not (gcd-body1$act body-inputs data-size))))
     :hints (("Goal" :in-theory (enable gcd1$body-inputs)))))

  (defthm gcd1$inv-preserved
    (implies (and (gcd1$input-format inputs data-size)
                  (gcd1$valid-st st data-size)
                  (gcd1$inv st))
             (gcd1$inv (gcd1$step inputs st data-size)))
    :hints (("Goal"
             :in-theory (e/d (f-sr
                              gcd1$valid-st
                              gcd1$st-format
                              gcd1$inv
                              gcd1$step
                              gcd1$extract
                              gcd1$br-inputs
                              gcd1$me-inputs
                              gcd-cond$data-in
                              gcd-cond$flag
                              gcd-cond$act
                              gcd-cond$act0
                              gcd-cond$act1
                              gcd-cond$br-inputs
                              branch$act0
                              branch$act1
                              merge$act
                              merge$act0
                              merge$act1)
                             (b-nor3)))))
  )

;; The extracted next-state function for GCD1.  Note that this function avoids
;; exploring the internal computation of GCD1.

(defund gcd1$extracted-step (inputs st data-size)
  (b* ((data (gcd$op (gcd1$data-in inputs data-size)))
       (extracted-st (gcd1$extract st))
       (n (1- (len extracted-st))))
    (cond
     ((equal (gcd1$out-act inputs st data-size) t)
      (cond
       ((equal (gcd1$in-act inputs st data-size) t)
        (cons data (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (gcd1$in-act inputs st data-size) t)
          (cons data extracted-st))
         (t extracted-st))))))

;; The single-step-update property

;; This property characterizes the one-step update on the future output
;; sequence given the current inputs and current state.  The trick here is to
;; apply the extraction function gcd1$extract to the step function gcd1$step so
;; that the one-step update on the future output sequence can be expressed in
;; terms of the gcd1$extracted-step function, which abstracts away the internal
;; computation of GCD1.

(progn
  (local
   (defthm gcd-body1$data-out-expand
     (b* ((body-inputs (gcd1$body-inputs inputs st data-size))
          (l1 (nth *gcd1$l1* st))
          (l1.d (nth *link$d* l1)))
       (implies
        (and (natp data-size)
             (equal (len l1.d) (* 2 data-size))
             (bvp (strip-cars l1.d)))
        (equal (gcd-body1$data-out body-inputs data-size)
               (v-if (v-< nil t
                          (rev (take data-size (strip-cars l1.d)))
                          (rev (nthcdr data-size (strip-cars l1.d))))
                     (append
                      (v-adder-output
                       t
                       (nthcdr data-size (strip-cars l1.d))
                       (v-not (take data-size (strip-cars l1.d))))
                      (take data-size (strip-cars l1.d)))
                     (append
                      (v-adder-output
                       t
                       (take data-size (strip-cars l1.d))
                       (v-not (nthcdr data-size (strip-cars l1.d))))
                      (nthcdr data-size (strip-cars l1.d)))))))
     :hints (("Goal"
              :in-theory (enable gcd-body1$data-in
                                 gcd-body1$a<b
                                 gcd-body1$data-out
                                 gcd-body1$data0-out
                                 gcd-body1$data1-out
                                 gcd1$body-inputs)))))

  (defthm gcd1$extracted-step-correct
    (b* ((next-st (gcd1$step inputs st data-size)))
      (implies (and (gcd1$input-format inputs data-size)
                    (gcd1$valid-st st data-size)
                    (gcd1$inv st))
               (equal (gcd1$extract next-st)
                      (gcd1$extracted-step inputs st data-size))))
    :hints (("Goal"
             :in-theory (e/d (f-sr
                              joint-act
                              gcd1$extracted-step
                              gcd1$valid-st
                              gcd1$st-format
                              gcd1$inv
                              gcd1$step
                              gcd1$in-act
                              gcd1$out-act
                              gcd1$data-out
                              gcd1$br-inputs
                              gcd1$me-inputs
                              gcd1$extract
                              gcd-cond$data-in
                              gcd-cond$flag
                              gcd-cond$act
                              gcd-cond$act0
                              gcd-cond$act1
                              gcd-cond$data1-out
                              gcd-cond$br-inputs
                              branch$act0
                              branch$act1
                              merge$act
                              merge$act0
                              merge$act1)
                             (b-nor3
                              v-if-works
                              v-not-take
                              v-not-nthcdr)))))
  )

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that gcd1$valid-st is an invariant.

(defthm gcd1$valid-st-preserved
  (implies (and (gcd1$input-format inputs data-size)
                (gcd1$valid-st st data-size))
           (gcd1$valid-st (gcd1$step inputs st data-size)
                         data-size))
  :hints (("Goal"
           :in-theory (e/d (f-sr
                            joint-act
                            gcd1$valid-st
                            gcd1$st-format
                            gcd1$step
                            gcd1$br-inputs
                            gcd1$me-inputs
                            gcd-cond$data-in
                            gcd-cond$flag
                            gcd-cond$act
                            gcd-cond$act0
                            gcd-cond$act1
                            gcd-cond$br-inputs
                            branch$act0
                            branch$act1
                            merge$act
                            merge$act0
                            merge$act1)
                           (b-nor3)))))

(defthm gcd1$extract-lemma
  (implies (and (gcd1$valid-st st data-size)
                (gcd1$out-act inputs st data-size))
           (equal (list (gcd1$data-out inputs st data-size))
                  (nthcdr (1- (len (gcd1$extract st)))
                          (gcd1$extract st))))
  :hints (("Goal"
           :do-not-induct t
           :in-theory (e/d (branch$act0
                            gcd-cond$data-in
                            gcd-cond$br-inputs
                            gcd-cond$act0
                            gcd-cond$flag
                            gcd-cond$data0-out
                            gcd1$valid-st
                            gcd1$extract
                            gcd$op
                            gcd1$br-inputs
                            gcd1$out-act
                            gcd1$data-out)
                           (v-if-works)))))

;; Extract the accepted input sequence

(seq-gen gcd1 in in-act 0
         (gcd1$data-in inputs data-size))

;; Extract the valid output sequence

(seq-gen gcd1 out out-act 1
         (gcd1$data-out inputs st data-size)
         :netlist-data (nthcdr 2 outputs))

;; The multi-step input-output relationship

(in-out-stream-lemma gcd1 :op gcd$op :inv t)