File: fm9001-spec.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (599 lines) | stat: -rw-r--r-- 17,511 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau (derived from the FM9001 work of Brock and Hunt)
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; The ACL2 source code for the FM9001 work is available at
;; https://github.com/acl2/acl2/tree/master/books/projects/fm9001.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; January 2019

(in-package "ADE")

(include-book "alu-spec")
(include-book "memory")

;; ======================================================================

#|
   FM9001 -- a processor for a new decade.

   Instruction format:
                                                          { N/A  mode-a rn-a
                                                          {  3     2      4
unused op-code store-cc set-flags mode-b rn-b a-immediate |
  4       4       4        4        2      4        1     {    a-immediate
                                                          {         9


The A operand is a 10 bit field.  If the high order bit is set, the low order
9 bits are treated as a signed immediate.  Otherwise, the low order six bits of
the A operand are a mode/register pair identical to the B operand.

(Note:  We use "a" for "rn-a" and "b" for "rn-b" below.)

Interpretation of the OP-CODE.

 0000  b <- a             Move
 0001  b <- a + 1         Increment
 0010  b <- a + b + c     Add with carry
 0011  b <- b + a         Add
 0100  b <- 0 - a         Negation
 0101  b <- a - 1         Decrement
 0110  b <- b - a - c     Subtract with borrow
 0111  b <- b - a         Subtract
 1000  b <- a >> 1        Rotate right, shifted through carry
 1001  b <- a >> 1        Arithmetic shift right, top bit copied
 1010  b <- a >> 1        Logical shift right, top bit zero
 1011  b <- b XOR a       Exclusive or
 1100  b <- b | a         Or
 1101  b <- b & a         And
 1110  b <- ~a            Not
 1111  b <- a             Move


Interpretation of the STORE-CC field.

 0000  (~c)                          Carry clear
 0001  (c)                           Carry set
 0010  (~v)                          Overflow clear
 0011  (v)                           Overflow set
 0100  (~n)                          Plus
 0101  (n)                           Negative
 0110  (~z)                          Not equal
 0111  (z)                           Equal
 1000  (~c & ~z)                     High
 1001  (c | z)                       Low or same
 1010  (n & v | ~n & ~v)             Greater or equal
 1011  (n & ~v | ~n & v)             Less than
 1100  (n & v & ~z | ~n & ~v & ~z)   Greater than
 1101  (z | n & ~v | ~n & v)         Less or equal
 1110  (t)                           True
 1111  (nil)                         False


Flags are set conditionally based on the SET-FLAGS field.

 0000  ----
 0001  ---Z
 0010  --N-
 0011  --NZ
 0100  -V--
 0101  -V-Z
 0110  -VN-
 0111  -VNZ
 1000  C---
 1001  C--Z
 1010  C-N-
 1011  C-NZ
 1100  CV--
 1101  CV-Z
 1110  CVN-
 1111  CVNZ

Addressing Modes for "a" and "b".

 00  Register Direct
 01  Register Indirect
 10  Register Indirect with Pre-decrement
 11  Register Indirect with Post-increment


Register Numbers for "a" and "b".

 0000  Register 0
 0001  Register 1
 0010  Register 2
 0011  Register 3
 0100  Register 4
 0101  Register 5
 0110  Register 6
 0111  Register 7
 1000  Register 8
 1001  Register 9
 1010  Register 10
 1011  Register 11
 1100  Register 12
 1101  Register 13
 1110  Register 14
 1111  Register 15

|#

;; Instruction accessors

(defun reg-size ()
  (declare (xargs :guard t))
  4)

(defun a-immediate-p (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (nth 9 instruction))

(defthm booleanp-a-immediate-p
  (implies (bvp ir)
           (booleanp (a-immediate-p ir)))
  :rule-classes :type-prescription)

(defun a-immediate (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 0 9))

(defthm len-a-immediate
  (equal (len (a-immediate i-reg)) 9))

(defthm bvp-a-immediate
  (implies (bvp i-reg)
           (bvp (a-immediate i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defun rn-a (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 0 4))

(defthm len-rn-a
  (equal (len (rn-a i-reg)) 4))

(defthm bvp-rn-a
  (implies (bvp i-reg)
           (bvp (rn-a i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defun mode-a (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 4 6))

;; (defthm true-listp-mode-a
;;   (true-listp (mode-a i-reg))
;;   :rule-classes :type-prescription)

(defthm len-mode-a
  (equal (len (mode-a i-reg)) 2))

(defthm bvp-mode-a
  (implies (bvp i-reg)
           (bvp (mode-a i-reg)))
  :hints (("Goal" :in-theory (enable bvp)))
  :rule-classes (:rewrite :type-prescription))

(defun rn-b (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 10 14))

(defthm len-rn-b
  (equal (len (rn-b i-reg)) 4))

(defthm bvp-rn-b
  (implies (bvp i-reg)
           (bvp (rn-b i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defun mode-b (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 14 16))

(defthm len-mode-b
  (equal (len (mode-b i-reg)) 2))

(acl2::set-induction-depth-limit nil) ; 14 suffices, but 13 does not

(defthm bvp-mode-b
  (implies (bvp i-reg)
           (bvp (mode-b i-reg)))
  :hints (("Goal" :in-theory (enable bvp)))
  :rule-classes (:rewrite :type-prescription))

(defun set-flags (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 16 20))

(defthm len-set-flags
  (equal (len (set-flags i-reg)) 4))

(defthm bvp-set-flags
  (implies (bvp i-reg)
           (bvp (set-flags i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defun store-cc (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 20 24))

(defthm len-store-cc
  (equal (len (store-cc i-reg)) 4))

(defthm bvp-store-cc
  (implies (bvp i-reg)
           (bvp (store-cc i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defun op-code (instruction)
  (declare (xargs :guard (true-listp instruction)))
  (subseq-list instruction 24 28))

(defthm len-op-code
  (equal (len (op-code i-reg)) 4))

(defthm bvp-op-code
  (implies (bvp i-reg)
           (bvp (op-code i-reg)))
  :rule-classes (:rewrite :type-prescription))

(defthm unary-op-code-p-op-code->v-alu=v-alu-1
  (implies (unary-op-code-p (op-code i-reg))
           (equal (v-alu c a b (op-code i-reg))
                  (v-alu-1 c a (op-code i-reg))))
  :hints (("Goal" :in-theory (enable unary-op-code-p->v-alu=v-alu-1))))

(deftheory ir-fields-theory
  '(a-immediate-p a-immediate rn-a mode-a rn-b mode-b
                  set-flags store-cc op-code))

(in-theory (disable ir-fields-theory))

;; SET-FLAGS fields

(defun z-set (set-flags)
  (declare (xargs :guard (true-listp set-flags)))
  (nth 0 set-flags))

(defthm booleanp-z-set
  (implies (bvp set-flags)
           (booleanp (z-set set-flags)))
  :rule-classes :type-prescription)

(defun n-set (set-flags)
  (declare (xargs :guard (true-listp set-flags)))
  (nth 1 set-flags))

(defthm booleanp-n-set
  (implies (bvp set-flags)
           (booleanp (n-set set-flags)))
  :rule-classes :type-prescription)

(defun v-set (set-flags)
  (declare (xargs :guard (true-listp set-flags)))
  (nth 2 set-flags))

(defthm booleanp-v-set
  (implies (bvp set-flags)
           (booleanp (v-set set-flags)))
  :rule-classes :type-prescription)

(defun c-set (set-flags)
  (declare (xargs :guard (true-listp set-flags)))
  (nth 3 set-flags))

(defthm booleanp-c-set
  (implies (bvp set-flags)
           (booleanp (c-set set-flags)))
  :rule-classes :type-prescription)

(deftheory set-flags-theory '(z-set n-set v-set c-set))

(in-theory (disable set-flags-theory))

;; Flags fields

(defun z-flag (flags)
  (declare (xargs :guard (true-listp flags)))
  (nth 0 flags))

(defthm booleanp-z-flag
  (implies (bvp flags)
           (booleanp (z-flag flags)))
  :rule-classes :type-prescription)

(defun n-flag (flags)
  (declare (xargs :guard (true-listp flags)))
  (nth 1 flags))

(defthm booleanp-n-flag
  (implies (bvp flags)
           (booleanp (n-flag flags)))
  :rule-classes :type-prescription)

(defun v-flag (flags)
  (declare (xargs :guard (true-listp flags)))
  (nth 2 flags))

(defthm booleanp-v-flag
  (implies (bvp flags)
           (booleanp (v-flag flags)))
  :rule-classes :type-prescription)

(defun c-flag (flags)
  (declare (xargs :guard (true-listp flags)))
  (nth 3 flags))

(defthm booleanp-c-flag
  (implies (bvp flags)
           (booleanp (c-flag flags)))
  :rule-classes :type-prescription)

(deftheory flags-theory '(z-flag n-flag v-flag c-flag))

(in-theory (disable flags-theory))

;; Interpretation of accessors

(defun reg-direct-p (mode)
  (declare (xargs :guard t))
  (equal mode (list nil nil)))

(defthm booleanp-reg-direct-p
  (booleanp (reg-direct-p mode))
  :rule-classes :type-prescription)

(defun reg-indirect-p (mode)
  (declare (xargs :guard t))
  (equal mode (list t nil)))

(defthm booleanp-reg-indirect-p
  (booleanp (reg-indirect-p mode))
  :rule-classes :type-prescription)

(defun pre-dec-p (mode)
  (declare (xargs :guard t))
  (equal mode (list nil t)))

(defthm booleanp-pre-dec-p
  (booleanp (pre-dec-p mode))
  :rule-classes :type-prescription)

(defun post-inc-p (mode)
  (declare (xargs :guard t))
  (equal mode (list t t)))

(defthm booleanp-post-inc-p
  (booleanp (post-inc-p mode))
  :rule-classes :type-prescription)

(defthm reg-direct->not-reg-indirect
  (implies (reg-direct-p mode)
           (and (not (reg-indirect-p mode))
                (not (pre-dec-p mode))
                (not (post-inc-p mode)))))

(deftheory reg-mode-theory
  '(reg-direct-p reg-indirect-p pre-dec-p post-inc-p))

(in-theory (disable reg-mode-theory))

;; Interpretation of STORE-CC

(defun store-resultp (store-cc flags)
  (declare (xargs :guard (true-listp flags)))
  (let ((c (c-flag flags))
        (v (v-flag flags))
        (n (n-flag flags))
        (z (z-flag flags)))
    (let ((c~ (not c))
          (v~ (not v))
          (n~ (not n))
          (z~ (not z)))

      (cond ((equal store-cc *v0000*) c~)
            ((equal store-cc *v0001*) c)
            ((equal store-cc *v0010*) v~)
            ((equal store-cc *v0011*) v)
            ((equal store-cc *v0100*) n~)
            ((equal store-cc *v0101*) n)
            ((equal store-cc *v0110*) z~)
            ((equal store-cc *v0111*) z)
            ((equal store-cc *v1000*) (and c~ z~))
            ((equal store-cc *v1001*) (or c z))
            ((equal store-cc *v1010*) (or (and n v) (and n~ v~)))
            ((equal store-cc *v1011*) (or (and n v~) (and n~ v)))
            ((equal store-cc *v1100*) (or (and n v z~) (and n~ v~ z~)))
            ((equal store-cc *v1101*) (or z (and n v~) (and n~ v)))
            ((equal store-cc *v1110*) t)
            (t                        nil)))))

(defthm booleanp-store-resultp
  (implies (bvp flags)
           (booleanp (store-resultp store-cc flags)))
  :hints (("Goal" :in-theory (enable c-flag v-flag n-flag z-flag)))
  :rule-classes :type-prescription)

(in-theory (disable store-resultp))

;; UPDATE-FLAGS set-flags cvzbv

(defun update-flags (flags set-flags cvzbv)
  (declare (xargs :guard (and (true-listp flags)
                              (true-listp set-flags)
                              (true-listp cvzbv))))
  (list (b-if (z-set set-flags) (zb cvzbv) (z-flag flags))
        (b-if (n-set set-flags) (n  cvzbv) (n-flag flags))
        (b-if (v-set set-flags) (v  cvzbv) (v-flag flags))
        (b-if (c-set set-flags) (c  cvzbv) (c-flag flags))))

(defthm bvp-update-flags
  (bvp (update-flags flags set-flags cvzbv))
  :rule-classes (:rewrite :type-prescription))

(defthm len-update-flags
  (equal (len (update-flags flags set-flags cvzbv))
         4))

(defthm booleanp-c-flag-update-flags
  (booleanp (c-flag (update-flags flags set-flags cvzbv)))
  :rule-classes :type-prescription)

(in-theory (disable update-flags))

;; An FM9001 state is a list of two items: The processor state, which
;; consists of the register file and flags, and the memory state.

(defund regs (st)
  (declare (xargs :guard (true-listp st)))
  (nth 0 st))

(defund flags (st)
  (declare (xargs :guard (true-listp st)))
  (nth 1 st))

;; ======================================================================

;; The FM9001 instruction interpreter

;; FM9001-ALU-OPERATION -- Computes, and conditionally stores the result.

(defun fm9001-alu-operation (regs flags mem ins operand-a operand-b b-address)
  (declare (xargs :guard (and (true-listp flags)
                              (true-listp ins)
                              (consp operand-a)
                              (true-listp operand-a)
                              (consp operand-b)
                              (true-listp operand-b)
                              (true-listp b-address))))
  (let ((op-code   (op-code ins))
        (store-cc  (store-cc ins))
        (set-flags (set-flags ins))
        (mode-b    (mode-b   ins))
        (rn-b      (rn-b    ins)))
    (let ((cvzbv  (v-alu (c-flag flags) operand-a operand-b op-code))
          (storep (store-resultp store-cc flags)))
      (let ((bv (bv cvzbv)))
        (let ((new-regs   (if (and storep (reg-direct-p mode-b))
                              (write-mem rn-b regs bv)
                            regs))
              (new-flags  (update-flags flags set-flags cvzbv))
              (new-mem    (if (and storep (not (reg-direct-p mode-b)))
                              (write-mem b-address mem bv)
                            mem)))

          (list (list new-regs new-flags) new-mem))))))

;; FM9001-OPERAND-B -- Readies the B operand, and side-effects the operand B
;; register. The B-ADDRESS is held for the final stage.

(defun fm9001-operand-b (regs flags mem ins operand-a)
  (let ((mode-b (mode-b ins))
        (rn-b   (rn-b  ins)))
    (let ((reg (read-mem rn-b regs)))
      (let ((reg- (v-dec reg))
            (reg+ (v-inc reg)))
        (let ((b-address (if (pre-dec-p mode-b)
                             reg-
                           reg)))
          (let ((operand-b (if (reg-direct-p mode-b)
                               reg
                             (read-mem b-address mem)))
                (new-regs (if (pre-dec-p mode-b)
                              (write-mem rn-b regs reg-)
                            (if (post-inc-p mode-b)
                                (write-mem rn-b regs reg+)
                              regs))))

            (FM9001-alu-operation new-regs flags mem ins operand-a operand-b
                                  b-address)))))))

;; FM9001-OPERAND-A -- Readies the A operand, and side-effects the operand A
;; register.

(defun fm9001-operand-a (regs flags mem ins)
  (let ((a-immediate-p (a-immediate-p ins))
        (a-immediate   (sign-extend (a-immediate ins) 32))
        (mode-a        (mode-a ins))
        (rn-a          (rn-a  ins)))
    (let ((reg (read-mem rn-a regs)))
      (let ((reg- (v-dec reg))
            (reg+ (v-inc reg)))
        (let ((operand-a (if a-immediate-p
                             a-immediate
                           (if (reg-direct-p mode-a)
                               reg
                             (if (pre-dec-p mode-a)
                                 (read-mem reg- mem)
                               (read-mem reg mem))))))
          (let ((new-regs (if a-immediate-p
                              regs
                            (if (pre-dec-p mode-a)
                                (write-mem rn-a regs reg-)
                              (if (post-inc-p mode-a)
                                  (write-mem rn-a regs reg+)
                                regs)))))

            (FM9001-operand-b new-regs flags mem ins operand-a)))))))

;; FM9001-FETCH -- Fetches the instruction and increments the PC.

(defun FM9001-FETCH (regs flags mem pc-reg)
  (let ((pc (read-mem pc-reg regs)))
    (let ((ins (read-mem pc mem)))
      (let ((pc+1 (v-inc pc)))
        (let ((new-regs (write-mem pc-reg regs pc+1)))
          (FM9001-operand-a new-regs flags mem ins))))))

;; FM9001-STEP -- Unpacks the state.

(defund FM9001-step (st pc-reg)
  (let ((p-st (car st))
        (mem  (cadr st)))
    (FM9001-fetch (regs p-st) (flags p-st) mem pc-reg)))

;; FM9001 -- Simulates N instructions, using register 15 as the PC.

(defund FM9001 (st n)
  (if (zp n)
      st
    (FM9001 (FM9001-step st (nat-to-v 15 (reg-size)))
            (1- n))))

;; FM9001-INTERPRETER -- Simulates N instructions with a given PC.

(defun FM9001-interpreter (st pc-reg n)
  (if (zp n)
      st
    (FM9001-interpreter
     (FM9001-step st pc-reg)
     pc-reg
     (1- n))))

(defthm open-FM9001-interpreter
  (and
   (implies (zp n)
            (equal (FM9001-interpreter st pc-reg n)
                   st))
   (implies (not (zp n))
            (equal (FM9001-interpreter st pc-reg n)
                   (FM9001-interpreter
                    (FM9001-step st pc-reg)
                    pc-reg
                    (1- n))))))

(in-theory (disable FM9001-interpreter))

;; FM9001-INTR -- The PC-REG-INPUT is used to determine which register is the
;; PC.

(defund FM9001-intr (st pc-reg-input)
  (if (atom pc-reg-input)
      st
    (FM9001-intr (FM9001-step st (car pc-reg-input))
                 (cdr pc-reg-input))))