File: serial-sub.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (1096 lines) | stat: -rw-r--r-- 40,152 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "piso2-sreg")
(include-book "sipo-sreg")

(local (include-book "../list-rewrites"))

(local (include-book "arithmetic-5/top" :dir :system))

(local (in-theory (disable nth)))

(local
 (deftheory serial-sub$disabled-rules
   '(acl2::default-plus-1
     acl2::default-plus-2
     acl2::normalize-terms-such-as-a/a+b-+-b/a+b
     acl2::acl2-numberp-x
     acl2::default-less-than-1
     acl2::default-less-than-2
     acl2::prefer-positive-addends-<
     acl2::simplify-products-gather-exponents-<
     acl2::len-when-prefixp
     acl2::take-when-prefixp
     take
     not
     default-car
     default-cdr
     true-listp
     bv-is-true-list)))

;; ======================================================================

;;; Table of Contents:
;;;
;;; 1. DE Module Generator of SERIAL-SUB
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences

;; ======================================================================

;; 1. DE Module Generator of SERIAL-SUB
;;
;; Construct a DE module generator that generates self-timed serial subtractor
;; modules.  Prove the value and state lemmas for this module generator.

(defconst *serial-sub$prim-go-num* 2)
(defconst *serial-sub$go-num* (+ *serial-sub$prim-go-num*
                                 *piso2-sreg$go-num*
                                 *sipo-sreg$go-num*))

(defun serial-sub$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (* 2 (mbe :logic (nfix data-size)
                 :exec  data-size))))

(defun serial-sub$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (serial-sub$data-ins-len data-size)
     *serial-sub$go-num*))

;; DE module generator of SERIAL-SUB

(module-generator
 serial-sub* (data-size)
 (si 'serial-sub data-size)
 (list* 'full-in 'empty-out-
        (append (sis 'data0-in 0 data-size)
                (sis 'data1-in 0 data-size)
                (sis 'go 0 *serial-sub$go-num*)))
 (list* 'in-act 'out-act
        (sis 'data-out 0 data-size))
 '(a b ci s co done piso2 sipo)
 (list
  ;; LINKS
  ;; A
  '(a (a-status a-out)
      link1
      (piso2-out0-act sub-act piso2-bit0-out))

  ;; B
  '(b (b-status b-out)
      link1
      (piso2-out1-act sub-act piso2-bit1-out))

  ;; CI
  '(ci (ci-status ci-out)
       link1
       (c-buf-act sub-act ci-in))

  ;; S
  '(s (s-status s-out)
      link1
      (sub-act sipo-in-act s-in))

  ;; CO
  '(co (co-status co-out)
       link1
       (sub-act c-buf-act co-in))

  ;; DONE
  '(done (done-status done-out)
         link1
         (sipo-in-act c-buf-act cnt-out=1))

  ;; JOINTS
  ;; PISO2
  (list 'piso2
        '(in-act piso2-out0-act piso2-out1-act
                 piso2-bit0-out piso2-bit1-out)
        (si 'piso2-sreg data-size)
        (list* 'full-in 'a-status 'b-status
               (append (sis 'data0-in 0 data-size)
                       (sis 'data1-in 0 data-size)
                       (sis 'go
                            *serial-sub$prim-go-num*
                            *piso2-sreg$go-num*))))

  ;; SIPO
  '(g0 (done-status~) b-not (done-status))
  '(g1 (sipo-full-in) b-and (s-status done-status~))
  (list 'sipo
        (list* 'sipo-in-act 'out-act 'cnt-out=1 (sis 'data-out 0 data-size))
        (si 'sipo-sreg data-size)
        (list* 'sipo-full-in 'empty-out- 's-out
               (sis 'go
                    (+ *serial-sub$prim-go-num*
                       *piso2-sreg$go-num*)
                    *sipo-sreg$go-num*)))

  ;; SUB
  '(g3 (sub-full-in) b-and3 (a-status b-status ci-status))
  '(g4 (sub-empty-out-) b-or (s-status co-status))
  '(g5 (b-out~) b-not (b-out))
  (list 'sub-cntl
        '(sub-act)
        'joint-cntl
        (list 'sub-full-in 'sub-empty-out- (si 'go 0)))
  '(sub-op (s-in co-in) full-adder (ci-out a-out b-out~))

  ;; C-BUF
  '(g6 (high) vdd ())
  '(g7 (c-buf-full-in) b-and (co-status done-status))
  (list 'c-buf-cntl
        '(c-buf-act)
        'joint-cntl
        (list 'c-buf-full-in 'ci-status (si 'go 1)))
  '(c-buf-op (ci-in) b-if (done-out high co-out)))

 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'serial-sub
                           '(a b ci s co done piso2 sipo)
                           0)))

;; DE netlist generator.  A generated netlist will contain an instance of
;; SERIAL-SUB.

(defund serial-sub$netlist (data-size cnt-size)
  (declare (xargs :guard (and (posp data-size)
                              (natp cnt-size)
                              (<= 3 cnt-size))))
  (cons (serial-sub* data-size)
        (union$ (link1$netlist)
                (piso2-sreg$netlist data-size cnt-size)
                (sipo-sreg$netlist data-size cnt-size)
                :test 'equal)))

;; Recognizer for SERIAL-SUB

(defund serial-sub& (netlist data-size cnt-size)
  (declare (xargs :guard (and (alistp netlist)
                              (posp data-size)
                              (natp cnt-size)
                              (<= 3 cnt-size))))
  (b* ((subnetlist (delete-to-eq (si 'serial-sub data-size) netlist)))
    (and (equal (assoc (si 'serial-sub data-size) netlist)
                (serial-sub* data-size))
         (link1& subnetlist)
         (joint-cntl& subnetlist)
         (full-adder& subnetlist)
         (piso2-sreg& subnetlist data-size cnt-size)
         (sipo-sreg& subnetlist data-size cnt-size))))

;; Sanity check

(local
 (defthmd check-serial-sub$netlist-64-7
   (and (net-syntax-okp (serial-sub$netlist 64 7))
        (net-arity-okp (serial-sub$netlist 64 7))
        (serial-sub& (serial-sub$netlist 64 7) 64 7))))

;; Constraints on the state of SERIAL-SUB

(defund serial-sub$st-format (st data-size cnt-size)
  (b* ((piso2 (nth *serial-sub$piso2* st))
       (sipo (nth *serial-sub$sipo* st)))
    (and (piso2-sreg$st-format piso2 data-size cnt-size)
         (sipo-sreg$st-format sipo data-size cnt-size))))

(defthm serial-sub$st-format=>constraint
  (implies (serial-sub$st-format st data-size cnt-size)
           (and (posp data-size)
                (natp cnt-size)
                (<= 4 cnt-size)))
  :hints (("Goal" :in-theory (enable serial-sub$st-format)))
  :rule-classes :forward-chaining)

(defund serial-sub$valid-st (st data-size cnt-size)
  (b* ((a (nth *serial-sub$a* st))
       (b (nth *serial-sub$b* st))
       (ci (nth *serial-sub$ci* st))
       (s (nth *serial-sub$s* st))
       (co (nth *serial-sub$co* st))
       (done (nth *serial-sub$done* st))
       (piso2 (nth *serial-sub$piso2* st))
       (sipo (nth *serial-sub$sipo* st)))
    (and (link1$valid-st a)
         (link1$valid-st b)
         (link1$valid-st ci)
         (link1$valid-st s)
         (link1$valid-st co)
         (link1$valid-st done)
         (piso2-sreg$valid-st piso2 data-size cnt-size)
         (sipo-sreg$valid-st sipo data-size cnt-size))))

(defthmd serial-sub$valid-st=>constraint
  (implies (serial-sub$valid-st st data-size cnt-size)
           (and (natp data-size)
                (<= 8 data-size)
                (natp cnt-size)
                (<= 4 cnt-size)))
  :hints (("Goal"
           :in-theory (enable sipo-sreg$valid-st=>constraint
                              serial-sub$valid-st)))
  :rule-classes :forward-chaining)

(defthmd serial-sub$valid-st=>st-format
  (implies (serial-sub$valid-st st data-size cnt-size)
           (serial-sub$st-format st data-size cnt-size))
  :hints (("Goal" :in-theory (enable piso2-sreg$valid-st=>st-format
                                     sipo-sreg$valid-st=>st-format
                                     serial-sub$st-format
                                     serial-sub$valid-st))))

;; Extract the input and output signals for SERIAL-SUB

(progn
  ;; Extract the 1st input operand

  (defun serial-sub$data0-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (mbe :logic (nfix data-size)
               :exec  data-size)
          (nthcdr 2 inputs)))

  (defthm len-serial-sub$data0-in
    (equal (len (serial-sub$data0-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable serial-sub$data0-in))

  ;; Extract the 2nd input operand

  (defun serial-sub$data1-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (b* ((size (mbe :logic (nfix data-size)
                     :exec  data-size)))
      (take size
            (nthcdr (+ 2 size) inputs))))

  (defthm len-serial-sub$data1-in
    (equal (len (serial-sub$data1-in inputs data-size))
           (nfix data-size)))

  (in-theory (disable serial-sub$data1-in))

  ;; Extract the inputs for joint PISO2

  (defund serial-sub$piso2-inputs (inputs st data-size)
    (b* ((full-in0 (nth 0 inputs))
         (data0-in (serial-sub$data0-in inputs data-size))
         (data1-in (serial-sub$data1-in inputs data-size))
         (go-signals (nthcdr (serial-sub$data-ins-len data-size) inputs))

         (piso2-go-signals (take *piso2-sreg$go-num*
                                  (nthcdr *serial-sub$prim-go-num*
                                          go-signals)))

         (a (nth *serial-sub$a* st))
         (a.s (nth *link1$s* a))
         (b (nth *serial-sub$b* st))
         (b.s (nth *link1$s* b)))

      (list* full-in0 (f-buf (car a.s)) (f-buf (car b.s))
             (append data0-in data1-in piso2-go-signals))))

  ;; Extract the inputs for joint SIPO

  (defund serial-sub$sipo-inputs (inputs st data-size)
    (b* ((empty-out- (nth 1 inputs))
         (go-signals (nthcdr (serial-sub$data-ins-len data-size) inputs))

         (sipo-go-signals (take *sipo-sreg$go-num*
                                (nthcdr (+ *serial-sub$prim-go-num*
                                           *piso2-sreg$go-num*)
                                        go-signals)))

         (s (nth *serial-sub$s* st))
         (s.s (nth *link1$s* s))
         (s.d (nth *link1$d* s))
         (done (nth *serial-sub$done* st))
         (done.s (nth *link1$s* done))

         (sipo-full-in (f-and (car s.s) (f-not (car done.s)))))

      (list* sipo-full-in empty-out- (f-buf (car s.d))
             sipo-go-signals)))

  ;; Extract the "in-act" signal

  (defund serial-sub$in-act (inputs st data-size)
    (b* ((piso2-inputs (serial-sub$piso2-inputs inputs st data-size))
         (piso2 (nth *serial-sub$piso2* st)))
      (piso2-sreg$in-act piso2-inputs piso2 data-size)))

  (defthm serial-sub$in-act-inactive
    (implies (not (nth 0 inputs))
             (not (serial-sub$in-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable serial-sub$piso2-inputs
                                       serial-sub$in-act))))

  ;; Extract the "out-act" signal

  (defund serial-sub$out-act (inputs st data-size)
    (b* ((sipo-inputs (serial-sub$sipo-inputs inputs st data-size))
         (sipo (nth *serial-sub$sipo* st)))
      (sipo-sreg$out-act sipo-inputs sipo)))

  (defthm serial-sub$out-act-inactive
    (implies (equal (nth 1 inputs) t)
             (not (serial-sub$out-act inputs st data-size)))
    :hints (("Goal" :in-theory (enable serial-sub$sipo-inputs
                                       serial-sub$out-act))))

  ;; Extract the output data

  (defund serial-sub$data-out (st)
    (b* ((sipo (nth *serial-sub$sipo* st)))
      (sipo-sreg$data-out sipo)))

  (defthm len-serial-sub$data-out-1
    (implies (serial-sub$st-format st data-size cnt-size)
             (equal (len (serial-sub$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable serial-sub$st-format
                                       serial-sub$data-out))))

  (defthm len-serial-sub$data-out-2
    (implies (serial-sub$valid-st st data-size cnt-size)
             (equal (len (serial-sub$data-out st))
                    data-size))
    :hints (("Goal" :in-theory (enable serial-sub$valid-st
                                       serial-sub$data-out))))

  (defthm bvp-serial-sub$data-out
    (implies (and (serial-sub$valid-st st data-size cnt-size)
                  (serial-sub$out-act inputs st data-size))
             (bvp (serial-sub$data-out st)))
    :hints (("Goal" :in-theory (e/d (serial-sub$valid-st
                                     serial-sub$out-act
                                     serial-sub$data-out)
                                    (sipo-sreg$extract-lemma)))))

  (defun serial-sub$outputs (inputs st data-size)
    (list* (serial-sub$in-act inputs st data-size)
           (serial-sub$out-act inputs st data-size)
           (serial-sub$data-out st)))
  )

;; The value lemma for SERIAL-SUB

(defthm serial-sub$value
  (b* ((inputs (list* full-in empty-out-
                      (append data0-in data1-in go-signals))))
    (implies (and (serial-sub& netlist data-size cnt-size)
                  (true-listp data0-in)
                  (equal (len data0-in) data-size)
                  (true-listp data1-in)
                  (equal (len data1-in) data-size)
                  (true-listp go-signals)
                  (equal (len go-signals) *serial-sub$go-num*)
                  (serial-sub$st-format st data-size cnt-size))
             (equal (se (si 'serial-sub data-size) inputs st netlist)
                    (serial-sub$outputs inputs st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (se (si 'serial-sub data-size)
                              inputs st netlist))
           :in-theory (e/d (de-rules
                            serial-sub&
                            serial-sub*$destructure
                            serial-sub$data0-in
                            serial-sub$data1-in
                            serial-sub$piso2-inputs
                            serial-sub$sipo-inputs
                            serial-sub$st-format
                            serial-sub$in-act
                            serial-sub$out-act
                            serial-sub$data-out)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of SERIAL-SUB.

(defun serial-sub$step (inputs st data-size cnt-size)
  (b* ((go-signals (nthcdr (serial-sub$data-ins-len data-size)
                           inputs))
       (go-sub (nth 0 go-signals))
       (go-c-buf (nth 1 go-signals))

       (a (nth *serial-sub$a* st))
       (b (nth *serial-sub$b* st))
       (ci (nth *serial-sub$ci* st))
       (s (nth *serial-sub$s* st))
       (co (nth *serial-sub$co* st))
       (done (nth *serial-sub$done* st))
       (piso2 (nth *serial-sub$piso2* st))
       (sipo (nth *serial-sub$sipo* st))

       (piso2-inputs (serial-sub$piso2-inputs inputs st data-size))
       (sipo-inputs (serial-sub$sipo-inputs inputs st data-size))

       (a.s (nth *link1$s* a))
       (a.d (nth *link1$d* a))
       (b.s (nth *link1$s* b))
       (b.d (nth *link1$d* b))
       (ci.s (nth *link1$s* ci))
       (ci.d (nth *link1$d* ci))
       (s.s (nth *link1$s* s))
       (co.s (nth *link1$s* co))
       (co.d (nth *link1$d* co))
       (done.s (nth *link1$s* done))
       (done.d (nth *link1$d* done))

       (piso2-out0-act
        (piso2-sreg$out0-act piso2-inputs piso2 data-size))
       (piso2-out1-act
        (piso2-sreg$out1-act piso2-inputs piso2 data-size))
       (piso2-bit0-out (piso2-sreg$bit0-out piso2))
       (piso2-bit1-out (piso2-sreg$bit1-out piso2))
       (sipo-in-act
        (sipo-sreg$in-act sipo-inputs sipo))
       (cnt-out=1 (sipo-sreg$cnt-out=1 sipo))
       (sub-act (joint-act (f-and3 (car a.s) (car b.s) (car ci.s))
                           (f-or (car s.s) (car co.s))
                           go-sub))
       (s-in (f-xor3 (car ci.d) (car a.d) (f-not (car b.d))))
       (co-in (f-or (f-and (car a.d) (f-not (car b.d)))
                    (f-and (f-xor (car a.d) (f-not (car b.d)))
                           (car ci.d))))
       (c-buf-act (joint-act (f-and (car co.s) (car done.s))
                             (car ci.s)
                             go-c-buf))
       (ci-in (f-if (car done.d) t (car co.d)))

       (a-inputs (list piso2-out0-act sub-act piso2-bit0-out))
       (b-inputs (list piso2-out1-act sub-act piso2-bit1-out))
       (ci-inputs (list c-buf-act sub-act ci-in))
       (s-inputs (list sub-act sipo-in-act s-in))
       (co-inputs (list sub-act c-buf-act co-in))
       (done-inputs (list sipo-in-act c-buf-act cnt-out=1)))
    (list
     ;; A
     (link1$step a-inputs a)
     ;; B
     (link1$step b-inputs b)
     ;; CI
     (link1$step ci-inputs ci)
     ;; S
     (link1$step s-inputs s)
     ;; CO
     (link1$step co-inputs co)
     ;; DONE
     (link1$step done-inputs done)
     ;; Joint PISO2
     (piso2-sreg$step piso2-inputs piso2 data-size cnt-size)
     ;; Joint SIPO
     (sipo-sreg$step sipo-inputs sipo data-size cnt-size))))

;; The state lemma for SERIAL-SUB

(defthm serial-sub$state
  (b* ((inputs (list* full-in empty-out-
                      (append data0-in data1-in go-signals))))
    (implies
     (and (serial-sub& netlist data-size cnt-size)
          (true-listp data0-in)
          (equal (len data0-in) data-size)
          (true-listp data1-in)
          (equal (len data1-in) data-size)
          (true-listp go-signals)
          (equal (len go-signals) *serial-sub$go-num*)
          (serial-sub$st-format st data-size cnt-size))
     (equal (de (si 'serial-sub data-size) inputs st netlist)
            (serial-sub$step inputs st data-size cnt-size))))
  :hints (("Goal"
           :do-not-induct t
           :expand (:free (inputs data-size)
                          (de (si 'serial-sub data-size)
                              inputs st netlist))
           :in-theory (e/d (de-rules
                            serial-sub&
                            serial-sub*$destructure
                            serial-sub$data0-in
                            serial-sub$data1-in
                            serial-sub$piso2-inputs
                            serial-sub$sipo-inputs
                            serial-sub$st-format)
                           (de-module-disabled-rules)))))

(in-theory (disable serial-sub$step))

;; ======================================================================

;; 2. Multi-Step State Lemma

;; Conditions on the inputs

(defund serial-sub$input-format (inputs data-size)
  (declare (xargs :guard (and (true-listp inputs)
                              (natp data-size))))
  (b* ((full-in    (nth 0 inputs))
       (empty-out- (nth 1 inputs))
       (data0-in   (serial-sub$data0-in inputs data-size))
       (data1-in   (serial-sub$data1-in inputs data-size))
       (go-signals (nthcdr (serial-sub$data-ins-len data-size) inputs)))
    (and
     (booleanp full-in)
     (booleanp empty-out-)
     (or (not full-in)
         (and (bvp data0-in) (bvp data1-in)))
     (true-listp go-signals)
     (= (len go-signals) *serial-sub$go-num*)
     (equal inputs
            (list* full-in empty-out-
                   (append data0-in data1-in go-signals))))))

(local
 (defthm serial-sub$input-format=>piso2$input-format
   (implies (and (serial-sub$input-format inputs data-size)
                 (serial-sub$valid-st st data-size cnt-size))
            (piso2-sreg$input-format
             (serial-sub$piso2-inputs inputs st data-size)
             data-size))
   :hints (("Goal"
            :in-theory (e/d (piso2-sreg$input-format
                             piso2-sreg$data0-in
                             piso2-sreg$data1-in
                             serial-sub$input-format
                             serial-sub$valid-st
                             serial-sub$piso2-inputs)
                            (acl2::simplify-products-gather-exponents-<
                             nfix))))))

(local
 (defthm serial-sub$input-format=>sipo$input-format
   (implies (and (serial-sub$input-format inputs data-size)
                 (serial-sub$valid-st st data-size cnt-size))
            (sipo-sreg$input-format
             (serial-sub$sipo-inputs inputs st data-size)))
   :hints (("Goal"
            :in-theory (e/d (bvp
                             sipo-sreg$input-format
                             sipo-sreg$bit-in
                             serial-sub$input-format
                             serial-sub$valid-st
                             serial-sub$sipo-inputs)
                            (nfix))))))

(defthm booleanp-serial-sub$in-act
  (implies (and (serial-sub$input-format inputs data-size)
                (serial-sub$valid-st st data-size cnt-size))
           (booleanp (serial-sub$in-act inputs st data-size)))
  :hints (("Goal"
           :use serial-sub$input-format=>piso2$input-format
           :in-theory (e/d (serial-sub$valid-st
                            serial-sub$in-act)
                           (serial-sub$input-format=>piso2$input-format
                            link1$valid-st))))
  :rule-classes (:rewrite :type-prescription))

(defthm booleanp-serial-sub$out-act
  (implies (and (serial-sub$input-format inputs data-size)
                (serial-sub$valid-st st data-size cnt-size))
           (booleanp (serial-sub$out-act inputs st data-size)))
  :hints (("Goal"
           :use serial-sub$input-format=>sipo$input-format
           :in-theory (e/d (serial-sub$valid-st
                            serial-sub$out-act)
                           (serial-sub$input-format=>sipo$input-format
                            link1$valid-st))))
  :rule-classes (:rewrite :type-prescription))

(simulate-lemma serial-sub :sizes (data-size cnt-size))

;; ======================================================================

;; 3. Single-Step-Update Property

;; Specify the functionality of SERIAL-SUB

(defun serial-sub$op (c a b)
  (v-adder-output c a (v-not b)))

(defthm bvp-serial-sub$op
  (bvp (serial-sub$op c a b))
  :rule-classes (:rewrite :type-prescription))

(defthm len-serial-sub$op
  (equal (len (serial-sub$op c a b))
         (len a)))

(in-theory (disable serial-sub$op))

;; The operation of SERIAL-SUB over a data sequence

(defun serial-sub$op-map (x)
  (if (atom x)
      nil
    (cons (serial-sub$op t (caar x) (cdar x))
          (serial-sub$op-map (cdr x)))))

(defthm serial-sub$op-map-of-append
  (equal (serial-sub$op-map (append x y))
         (append (serial-sub$op-map x)
                 (serial-sub$op-map y))))

;; The extraction function for SERIAL-SUB that extracts the future
;; output sequence from the current state.

(defund serial-sub$extract (st data-size)
  (b* ((a (nth *serial-sub$a* st))
       (b (nth *serial-sub$b* st))
       (ci (nth *serial-sub$ci* st))
       (s (nth *serial-sub$s* st))
       (co (nth *serial-sub$co* st))
       (piso2 (nth *serial-sub$piso2* st))
       (sipo (nth *serial-sub$sipo* st))

       (a.s (nth *link1$s* a))
       (a.d (nth *link1$d* a))
       (b.s (nth *link1$s* b))
       (b.d (nth *link1$d* b))
       (ci.s (nth *link1$s* ci))
       (ci.d (nth *link1$d* ci))
       (s.s (nth *link1$s* s))
       (s.d (nth *link1$d* s))
       (co.d (nth *link1$d* co))

       (a.valid-d (if (fullp a.s) a.d nil))
       (b.valid-d (if (fullp b.s) b.d nil))
       (c (if (fullp ci.s) (car ci.d) (car co.d)))
       (s.valid-d (if (fullp s.s) s.d nil))
       (piso0.valid-d (piso2-sreg$extract0 piso2))
       (piso1.valid-d (piso2-sreg$extract1 piso2))
       (sipo.valid-d (sipo-sreg$extract sipo))
       (in0 (append a.valid-d piso0.valid-d))
       (in1 (append b.valid-d piso1.valid-d))
       (out (append sipo.valid-d s.valid-d)))
    (cond
     ((equal (+ (len in0) (len out))
             (* 2 data-size))
      (cond
       ((< (len out) data-size)
        (list (serial-sub$op t piso0.valid-d piso1.valid-d)
              (append
               out
               (list (b-xor3 c (car a.valid-d) (b-not (car b.valid-d)))))))
       ((equal (len out) data-size)
        (list (serial-sub$op t in0 in1)
              out))
       (t (list (append s.valid-d
                        (serial-sub$op c in0 in1))
                sipo.valid-d))))
     ((equal (+ (len in0) (len out))
             data-size)
      (cond
       ((equal (len out) 0)
        (list (serial-sub$op t in0 in1)))
       ((< (len out) data-size)
        (list (append out
                      (serial-sub$op c in0 in1))))
       (t (list out))))
     (t nil))))

;; Specify and prove a state invariant

(progn
  (defund serial-sub$inv (st data-size)
    (b* ((a (nth *serial-sub$a* st))
         (b (nth *serial-sub$b* st))
         (ci (nth *serial-sub$ci* st))
         (s (nth *serial-sub$s* st))
         (co (nth *serial-sub$co* st))
         (done (nth *serial-sub$done* st))
         (piso2 (nth *serial-sub$piso2* st))
         (sipo (nth *serial-sub$sipo* st))

         (a.s (nth *link1$s* a))
         (a.d (nth *link1$d* a))
         (b.s (nth *link1$s* b))
         (b.d (nth *link1$d* b))
         (ci.s (nth *link1$s* ci))
         (ci.d (nth *link1$d* ci))
         (s.s (nth *link1$s* s))
         (s.d (nth *link1$d* s))
         (co.s (nth *link1$s* co))
         (done.s (nth *link1$s* done))
         (done.d (nth *link1$d* done))

         (a.valid-d (if (fullp a.s) a.d nil))
         (b.valid-d (if (fullp b.s) b.d nil))
         (s.valid-d (if (fullp s.s) s.d nil))
         (piso0.valid-d (piso2-sreg$extract0 piso2))
         (piso1.valid-d (piso2-sreg$extract1 piso2))
         (sipo.valid-d (sipo-sreg$extract sipo))
         (in0 (append a.valid-d piso0.valid-d))
         (in1 (append b.valid-d piso1.valid-d))
         (out (append sipo.valid-d s.valid-d)))
      (and (not (equal ci.s co.s))
           (or (emptyp ci.s) (emptyp done.s))
           (or (emptyp co.s)
               (not (equal s.s done.s)))
           (or (emptyp s.s)
               (and (fullp co.s) (emptyp done.s)))
           (or (emptyp ci.s)
               (and (not (equal (len in0) 0))
                    (not (equal (len in0) data-size)))
               (car ci.d))
           (or (emptyp done.s)
               (equal (car done.d)
                      (or (equal (len sipo.valid-d) 0)
                          (equal (len sipo.valid-d) data-size))))
           (equal (len in0) (len in1))
           (or (equal (+ (len in0) (len out))
                      0)
               (equal (+ (len in0) (len out))
                      data-size)
               (equal (+ (len in0) (len out))
                      (* 2 data-size)))
           (piso2-sreg$inv piso2)
           (sipo-sreg$inv sipo))))

  (defthm serial-sub$extract-not-empty
    (implies (and (serial-sub$out-act inputs st data-size)
                  (serial-sub$valid-st st data-size cnt-size)
                  (serial-sub$inv st data-size))
             (< 0 (len (serial-sub$extract st data-size))))
    :hints (("Goal"
             :in-theory (e/d (serial-sub$valid-st
                              serial-sub$inv
                              serial-sub$extract
                              serial-sub$out-act)
                             (b-gates
                              serial-sub$disabled-rules))))
    :rule-classes :linear)

  (local
   (defthm serial-sub$piso2-out0-act-inactive
     (b* ((a (nth *serial-sub$a* st))
          (a.s (nth *link1$s* a))
          (piso2-inputs (serial-sub$piso2-inputs inputs st data-size))
          (piso2 (nth *serial-sub$piso2* st)))
       (implies (fullp a.s)
                (not (piso2-sreg$out0-act piso2-inputs
                                                    piso2
                                                    data-size))))
     :hints (("Goal" :in-theory (enable serial-sub$piso2-inputs)))))

  (local
   (defthm serial-sub$piso2-out1-act-inactive
     (b* ((b (nth *serial-sub$b* st))
          (b.s (nth *link1$s* b))
          (piso2-inputs (serial-sub$piso2-inputs inputs st data-size))
          (piso2 (nth *serial-sub$piso2* st)))
       (implies (fullp b.s)
                (not (piso2-sreg$out1-act piso2-inputs
                                                    piso2
                                                    data-size))))
     :hints (("Goal" :in-theory (enable serial-sub$piso2-inputs)))))

  (local
   (defthm serial-sub$sipo-in-act-inactive
     (b* ((s (nth *serial-sub$s* st))
          (s.s (nth *link1$s* s))
          (done (nth *serial-sub$done* st))
          (done.s (nth *link1$s* done))
          (sipo-inputs (serial-sub$sipo-inputs inputs st data-size))
          (sipo (nth *serial-sub$sipo* st)))
       (implies (or (emptyp s.s)
                    (fullp done.s))
                (not (sipo-sreg$in-act sipo-inputs sipo))))
     :hints (("Goal" :in-theory (enable serial-sub$sipo-inputs)))))

  (local
   (defthm v-to-nat-of-v-zp
     (equal (v-zp x)
            (equal (v-to-nat x) 0))
     :hints (("Goal" :in-theory (enable v-zp v-nzp v-to-nat)))))

  (local
     (defthm len-cdr
       (implies (< 0 (len x))
                (equal (len (cdr x))
                       (1- (len x))))))

  (encapsulate
    ()

    (local
     (defthm sipo-sreg$cnt-out=1-rewrite
       (implies (and (sipo-sreg$in-act inputs st)
                     (sipo-sreg$valid-st st data-size cnt-size)
                     (sipo-sreg$inv st))
                (equal (sipo-sreg$cnt-out=1 st)
                       (equal (len (sipo-sreg$extract st))
                              (1- data-size))))
       :hints (("Goal" :in-theory (enable bvp
                                          v-to-nat
                                          sipo-sreg$in-act
                                          sipo-sreg$valid-st
                                          sipo-sreg$inv
                                          sipo-sreg$cnt-out=1
                                          sipo-sreg$extract)))))

    (defthm serial-sub$inv-preserved
      (implies (and (serial-sub$input-format inputs data-size)
                    (serial-sub$valid-st st data-size cnt-size)
                    (serial-sub$inv st data-size))
               (serial-sub$inv
                (serial-sub$step inputs st data-size cnt-size)
                data-size))
      :hints (("Goal"
               :use (serial-sub$input-format=>piso2$input-format
                     serial-sub$input-format=>sipo$input-format)
               :in-theory (e/d (f-sr
                                pos-len=>cons
                                sipo-sreg$valid-st=>constraint
                                piso2-sreg$extracted0-step
                                piso2-sreg$extracted1-step
                                sipo-sreg$extracted-step
                                serial-sub$valid-st
                                serial-sub$inv
                                serial-sub$step)
                               (serial-sub$input-format=>piso2$input-format
                                serial-sub$input-format=>sipo$input-format
                                sipo-sreg$out-act-inactive
                                serial-sub$disabled-rules)))))
    )
  )

;; The extracted next-state function for SERIAL-SUB.  Note that this function
;; avoids exploring the internal computation of SERIAL-SUB.

(defund serial-sub$extracted-step (inputs st data-size)
  (b* ((data0 (serial-sub$data0-in inputs data-size))
       (data1 (serial-sub$data1-in inputs data-size))
       (extracted-st (serial-sub$extract st data-size))
       (n (1- (len extracted-st))))
    (cond
     ((equal (serial-sub$out-act inputs st data-size) t)
      (cond
       ((equal (serial-sub$in-act inputs st data-size) t)
        (cons (serial-sub$op t data0 data1)
              (take n extracted-st)))
       (t (take n extracted-st))))
     (t (cond
         ((equal (serial-sub$in-act inputs st data-size) t)
          (cons (serial-sub$op t data0 data1)
                extracted-st))
         (t extracted-st))))))

;; The single-step-update property

(encapsulate
  ()

  (local
   (defthm serial-sub-aux-1
     (b* ((piso2-inputs (serial-sub$piso2-inputs inputs st data-size)))
       (equal (piso2-sreg$data0-in piso2-inputs data-size)
              (serial-sub$data0-in inputs data-size)))
     :hints (("Goal" :in-theory (enable piso2-sreg$data0-in
                                        serial-sub$piso2-inputs
                                        serial-sub$data0-in)))))

  (local
   (defthm serial-sub-aux-2
     (b* ((piso2-inputs (serial-sub$piso2-inputs inputs st data-size)))
       (equal (piso2-sreg$data1-in piso2-inputs data-size)
              (serial-sub$data1-in inputs data-size)))
     :hints (("Goal" :in-theory (enable piso2-sreg$data1-in
                                        serial-sub$piso2-inputs
                                        serial-sub$data1-in)))))

  (local
   (defthm serial-sub-aux-3
     (b* ((s (nth *serial-sub$s* st))
          (s.d (nth *link1$d* s))
          (sipo-inputs (serial-sub$sipo-inputs inputs st data-size)))
       (equal (sipo-sreg$bit-in sipo-inputs)
              (f-buf (car s.d))))
     :hints (("Goal" :in-theory (enable sipo-sreg$bit-in
                                        serial-sub$sipo-inputs)))))

  (local
   (defthmd consp-is-pos-len
     (equal (consp x)
            (< 0 (len x)))))

  (local
   (defthm append-of-len-0
     (implies (equal (len x) 0)
              (equal (append x y) y))))

  (local
   (defthm append-of-len-1
     (implies (equal (len x) 1)
              (equal (append x y)
                     (cons (car x) y)))))

  (local
   (defthm nth-0-is-car
     (equal (nth 0 l)
            (car l))
     :hints (("Goal" :in-theory (enable nth)))))

  (defthm serial-sub$extracted-step-correct
    (b* ((next-st (serial-sub$step inputs st data-size cnt-size)))
      (implies (and (serial-sub$input-format inputs data-size)
                    (serial-sub$valid-st st data-size cnt-size)
                    (serial-sub$inv st data-size))
               (equal (serial-sub$extract next-st data-size)
                      (serial-sub$extracted-step inputs st data-size))))
    :hints (("Goal"
             :use (serial-sub$input-format=>piso2$input-format
                   serial-sub$input-format=>sipo$input-format)
             :in-theory (e/d (f-sr
                              list-rewrite-1
                              consp-is-pos-len
                              v-adder
                              v-adder-output
                              v-not
                              sipo-sreg$valid-st=>constraint
                              piso2-sreg$extracted0-step
                              piso2-sreg$extracted1-step
                              sipo-sreg$extracted-step
                              serial-sub$extracted-step
                              serial-sub$valid-st
                              serial-sub$inv
                              serial-sub$step
                              serial-sub$in-act
                              serial-sub$out-act
                              serial-sub$extract
                              serial-sub$op)
                             (serial-sub$input-format=>piso2$input-format
                              serial-sub$input-format=>sipo$input-format
                              sipo-sreg$out-act-inactive
                              car-cdr-elim
                              serial-sub$disabled-rules)))))
  )

;; ======================================================================

;; 4. Relationship Between the Input and Output Sequences

;; Prove that serial-sub$valid-st is an invariant.

(defthm serial-sub$valid-st-preserved
  (implies (and (serial-sub$input-format inputs data-size)
                (serial-sub$valid-st st data-size cnt-size))
           (serial-sub$valid-st
            (serial-sub$step inputs st data-size cnt-size)
            data-size
            cnt-size))
  :hints (("Goal"
           :use (serial-sub$input-format=>piso2$input-format
                 serial-sub$input-format=>sipo$input-format)
           :in-theory (e/d (f-sr
                            sipo-sreg$valid-st=>constraint
                            serial-sub$valid-st
                            serial-sub$step)
                           (serial-sub$input-format=>piso2$input-format
                            serial-sub$input-format=>sipo$input-format
                            b-gates
                            serial-sub$disabled-rules)))))

(defthm serial-sub$extract-lemma
  (implies (and (serial-sub$valid-st st data-size cnt-size)
                (serial-sub$inv st data-size)
                (serial-sub$out-act inputs st data-size))
           (equal (list (serial-sub$data-out st))
                  (nthcdr (1- (len (serial-sub$extract st data-size)))
                          (serial-sub$extract st data-size))))
  :hints (("Goal"
           :do-not-induct t
           :in-theory (e/d (serial-sub$valid-st
                            serial-sub$inv
                            serial-sub$extract
                            serial-sub$out-act
                            serial-sub$data-out)
                           (serial-sub$disabled-rules)))))

;; Extract the accepted input sequence

(seq-gen serial-sub in in-act 0
         (cons (serial-sub$data0-in inputs data-size)
               (serial-sub$data1-in inputs data-size))
         :sizes (data-size cnt-size))

;; Extract the valid output sequence

(seq-gen serial-sub out out-act 1
         (serial-sub$data-out st)
         :netlist-data (nthcdr 2 outputs)
         :sizes (data-size cnt-size))

;; The multi-step input-output relationship

(encapsulate
  ()

  (local
   (defthm serial-sub$dataflow-correct-aux
     (implies (equal (append x y1)
                     (append (serial-sub$op-map seq) y2))
              (equal (append x y1 z)
                     (append (serial-sub$op-map seq)
                             y2 z)))
     :hints (("Goal" :in-theory (e/d (left-associativity-of-append)
                                     (associativity-of-append))))))

  (defthmd serial-sub$dataflow-correct
    (b* ((extracted-st (serial-sub$extract st data-size))
         (final-st (serial-sub$run
                    inputs-seq st data-size cnt-size n))
         (final-extracted-st (serial-sub$extract final-st data-size)))
      (implies
       (and (serial-sub$input-format-n inputs-seq data-size n)
            (serial-sub$valid-st st data-size cnt-size)
            (serial-sub$inv st data-size))
       (equal (append final-extracted-st
                      (serial-sub$out-seq
                       inputs-seq st data-size cnt-size n))
              (append (serial-sub$op-map
                       (serial-sub$in-seq
                        inputs-seq st data-size cnt-size n))
                      extracted-st))))
    :hints (("Goal"
             :in-theory (enable serial-sub$extracted-step))))

  (defthmd serial-sub$functionally-correct
    (b* ((extracted-st (serial-sub$extract st data-size))
         (final-st (de-n (si 'serial-sub data-size)
                         inputs-seq st netlist n))
         (final-extracted-st (serial-sub$extract final-st data-size)))
      (implies
       (and (serial-sub& netlist data-size cnt-size)
            (serial-sub$input-format-n inputs-seq data-size n)
            (serial-sub$valid-st st data-size cnt-size)
            (serial-sub$inv st data-size))
       (equal (append final-extracted-st
                      (serial-sub$out-seq-netlist
                       inputs-seq st netlist data-size n))
              (append (serial-sub$op-map
                       (serial-sub$in-seq-netlist
                        inputs-seq st netlist data-size n))
                      extracted-st))))
    :hints (("Goal"
             :use serial-sub$dataflow-correct
             :in-theory (enable serial-sub$valid-st=>st-format
                                serial-sub$de-n))))
  )