1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau (derived from the FM9001 work of Brock and Hunt)
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; The ACL2 source code for the FM9001 work is available at
;; https://github.com/acl2/acl2/tree/master/books/projects/fm9001.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; January 2019
(in-package "ADE")
(include-book "de")
(include-book "tree-number")
(local (include-book "arithmetic-5/top" :dir :system))
;; ======================================================================
;; TV-IF is a vector multiplexor which buffers the control line according to
;; the TREE argument. Buffers are inserted whenever a tree has ((TREE-HEIGHT
;; tree) modulo 3) = 0.
;; This generator creates modules which are to be used as in this sample module
;; occurence, where n = (tree-size tree):
;; (LIST <occurence-name>
;; <output list (n elements)>
;; (SI 'TV-IF (TREE-NUMBER tree))
;; (CONS <control signal>
;; <A input bus (n elements)>
;; <B input bus (n elements)>))
;; The predicate is (TV-IF& tree), and the netlist is (TV-IF$NETLIST tree).
;; For a balanced tree of n leaves, use tree = (MAKE-TREE n).
(defun tv-if-body (tree)
(declare (xargs :guard (listp tree)))
(let ((a-names (sis 'a 0 (tree-size tree)))
(b-names (sis 'b 0 (tree-size tree)))
(out-names (sis 'out 0 (tree-size tree))))
(let ((left-a-names (tfirstn a-names tree))
(right-a-names (trestn a-names tree))
(left-b-names (tfirstn b-names tree))
(right-b-names (trestn b-names tree))
(left-out-names (tfirstn out-names tree))
(right-out-names (trestn out-names tree)))
(if (atom tree)
(list
(list 'leaf
(list (si 'out 0))
'b-if
(list 'c (si 'a 0) (si 'b 0))))
;; The control line is heuristically buffered.
(let ((buffer? (zp (mod (tree-height tree) 3))))
(let ((c-name (if buffer? 'c-buf 'c)))
(append
;; The buffer.
(if buffer?
'((c-buf (c-buf) b-buf (c)))
nil)
(list
;; The LHS tree.
(list 'left
left-out-names
(si 'tv-if (tree-number (car tree)))
(cons c-name (append left-a-names left-b-names)))
;; The RHS tree.
(list 'right
right-out-names
(si 'tv-if (tree-number (cdr tree)))
(cons c-name (append right-a-names right-b-names)))))))))))
(module-generator
tv-if* (tree)
;; Name
(si 'tv-if (tree-number tree))
;; Inputs
(cons 'c (append (sis 'a 0 (tree-size tree))
(sis 'b 0 (tree-size tree))))
;; Outputs
(sis 'out 0 (tree-size tree))
;; States
nil
;; Occurrences
(tv-if-body tree)
(declare (xargs :guard (listp tree))))
(defund tv-if$netlist (tree)
(declare (xargs :guard (tv-guard tree)))
(if (atom tree)
(list (tv-if* tree))
(cons (tv-if* tree)
(union$ (tv-if$netlist (car tree))
(tv-if$netlist (cdr tree))
:test 'equal))))
;; Note that both the netlist generator and the netlist predicate are
;; recursive.
(defund tv-if& (netlist tree)
(declare (xargs :guard (and (alistp netlist)
(tv-guard tree))))
(if (atom tree)
(equal (assoc (si 'tv-if (tree-number tree)) netlist)
(tv-if* tree))
(and (equal (assoc (si 'tv-if (tree-number tree)) netlist)
(tv-if* tree))
(tv-if& (delete-to-eq (si 'tv-if (tree-number tree)) netlist)
(car tree))
(tv-if& (delete-to-eq (si 'tv-if (tree-number tree)) netlist)
(cdr tree)))))
;; Sanity check
(local
(defthmd check-tv-if$netlist-64
(and (net-syntax-okp (tv-if$netlist (make-tree 64)))
(net-arity-okp (tv-if$netlist (make-tree 64)))
(tv-if& (tv-if$netlist (make-tree 64))
(make-tree 64)))))
;; The proofs require this special induction scheme.
(defun tv-if-induction (tree n c a b st netlist)
(if (atom tree)
(list n c a b st netlist)
(and
(tv-if-induction
(car tree)
(tree-number (car tree))
c
(tfirstn a tree)
(tfirstn b tree)
nil
(delete-to-eq (si 'tv-if (tree-number tree)) netlist))
(tv-if-induction
(car tree)
(tree-number (car tree))
*x*
(tfirstn a tree)
(tfirstn b tree)
nil
(delete-to-eq (si 'tv-if (tree-number tree)) netlist))
(tv-if-induction
(cdr tree)
(tree-number (cdr tree))
c
(trestn a tree)
(trestn b tree)
nil
(delete-to-eq (si 'tv-if (tree-number tree)) netlist))
(tv-if-induction
(cdr tree)
(tree-number (cdr tree))
*x*
(trestn a tree)
(trestn b tree)
nil
(delete-to-eq (si 'tv-if (tree-number tree)) netlist)))))
;; This lemma is necessary to force consideration of the output vector as an
;; APPEND of two sublists, based on the tree specification. Expressions such
;; as this would normally be rewritten the other way.
;; (defthmd tv-if-lemma-crock
;; (implies (<= (tree-size (car tree))
;; (nfix n))
;; (equal (assoc-eq-values (sis 'out 0 n)
;; alist)
;; (append (assoc-eq-values (take (tree-size (car tree))
;; (sis 'out 0 n))
;; alist)
;; (assoc-eq-values (nthcdr (tree-size (car tree))
;; (sis 'out 0 n))
;; alist))))
;; :hints (("Goal"
;; :use (:instance assoc-eq-values-splitting-crock
;; (l (sis 'out 0 n))
;; (n (tree-size (car tree)))))))
(local
(defthm cdr-append-singleton
(implies (equal (len x) 1)
(equal (cdr (append x y))
y))
:hints (("Goal"
:expand (append (cdr x) y)))))
(local
(defthm tv-if$value-aux
(implies (and (no-duplicatesp keys)
(true-listp x)
(true-listp y)
(equal (len keys)
(+ (len x) (len y)))
(equal i
(len y))
(<= i (len keys)))
(equal
(assoc-eq-values keys
(append (pairlis$ (nthcdr i keys)
x)
(pairlis$ (take i keys)
y)
z))
(append y x)))
:hints (("Goal"
:do-not-induct t
:in-theory (disable assoc-eq-values-splitting-crock)
:use (:instance assoc-eq-values-splitting-crock
(n i)
(l keys)
(alist (append (pairlis$ (nthcdr i keys)
x)
(pairlis$ (take i keys)
y)
z)))))))
(defthm tv-if$value
(implies (and (tv-if& netlist tree)
(equal n (tree-number tree))
(true-listp a) (true-listp b)
(equal (len a) (tree-size tree))
(equal (len b) (tree-size tree)))
(equal (se (si 'tv-if n)
(cons c (append a b))
st
netlist)
(fv-if c a b)))
:hints (("Goal"
:induct (tv-if-induction tree n c a b st netlist)
:expand (:free (inputs n)
(se (si 'tv-if n) inputs st netlist))
:in-theory (e/d (de-rules
tv-if&
tv-if*$destructure
f-if
tree-size
open-v-threefix
fv-if-rewrite)
(not
3v-fix
de-module-disabled-rules)))))
|