File: chol.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (482 lines) | stat: -rw-r--r-- 19,232 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
;; Copyright (C) 2024 Carl Kwan
;;
;; Summary:
;;      Defining Cholesky decomposition and proving its correctness.
;;
;;      Main definitions:
;;      - get-L, get the lower triangular part of a matrix
;;      - chol, logical Cholesky decomposition of a matrix
;;      - positive-definite-p, recognize a positive definite matrix
;;      - chol-fact-exists, posits the existance of a Cholesky decomposition
;;      - chol-exec, executable Cholesky decomposition using iterative square root
;;
;;      Main theorems:
;;      - chol-correctness, correctness of chol
;;      - cholesky-factorization-theorem, Cholesky Factorization Theorem
;;
;; Requires:
; cert_param: (uses-acl2r)
(in-package "ACL2")
(include-book "mlayers")
(include-book "msym")
(include-book "msplice")
(include-book "nonstd/nsa/sqrt" :dir :system)

(verify-guards acl2-sqrt)

;; Get lower triangular part of a matrix
;; Do not put 1s on the diagonal
;;  [ * * * * * ]     [ *         ]
;;  [ * * * * * ]     [ * *       ]
;;  [ * * * * * ] --> [ * * *     ]
;;      ...               ...
;;  [ * ... * * ]     [ * ... * * ]
(define get-L ((A matrixp))
 :measure (and (col-count A) (row-count A))
 :returns L
 :verify-guards nil
 (b* (((unless (matrixp A)) (m-empty))
      ((if (m-emptyp A)) A)
      ((if (m-emptyp (col-cdr A))) A)
      ((if (m-emptyp (row-cdr A)))
           (col-cons (col-car A) (mzero (row-count A)
                                        (1- (col-count A))))))
     (row-cons (cons (car (row-car A)) (vzero (1- (col-count A))))
               (col-cons (col-car (row-cdr A))
                         (get-L (row-cdr (col-cdr A))))))
 ///
 (more-returns
  ;; "Type" theorems
  (L (implies (matrixp A) (equal (row-count L) (row-count A)))
     :name row-count-get-L)
  (L (implies (matrixp A) (equal (col-count L) (col-count A)))
     :name col-count-get-L)
  (L (matrixp L))

  (L (equal (m-emptyp L) (or (m-emptyp A) (not (matrixp A))))
     :name m-emptyp-get-L)
  (L (implies (and (matrixp A) (not (m-emptyp (col-cdr A))))
              (not (m-emptyp (col-cdr L))))
     :name m-emptyp-col-cdr-get-L))

 ;; Necessary for verifying guards
 (defthm get-l-col-cons-def
  (implies (and (matrixp A)
                (not (m-emptyp (col-cdr A)))
                (not (m-emptyp (row-cdr A))))
           (equal (get-L A)
                  (col-cons (col-car A)
                            (row-cons (vzero (1- (col-count A)))
                                      (get-L (row-cdr (col-cdr A)))))))
  :hints (("Goal"
           :use ((:instance row-cons-col-cons
                            (m (get-L (row-cdr (col-cdr A))))
                            (l (cons (car (row-car A)) (vzero (1- (col-count A)))))
                            (k (col-car (row-cdr A))))))))
 (verify-guards get-L)

 ;; "Unwrapping" theorems
 (defthm col-car-get-L
  (implies (and (matrixp A))
           (equal (col-car (get-L A))
                  (col-car A))))

 (defthm row-car-get-L
  (implies (and (matrixp A) (not (m-emptyp A)))
           (equal (row-car (get-L A))
                  (cons (car (row-car A))
                        (vzero (1- (col-count A)))))))

 (defthm col-car-row-cdr-get-L
  (implies (and (matrixp A) (not (m-emptyp A)))
           (equal (col-car (row-cdr (get-L A)))
                  (col-car (row-cdr A)))))

;; Move "unwrapping" to inside get-L
(defthm col-cdr-row-cdr-get-L
 (implies (matrixp A)
          (equal (col-cdr (row-cdr (get-L A)))
                 (get-L (row-cdr (col-cdr A))))))

;; Move "unwrapping" to inside get-L
(defthm row-cdr-col-cdr-get-L
 (implies (matrixp A)
          (equal (row-cdr (col-cdr (get-L A)))
                 (get-L (row-cdr (col-cdr A)))))))
;; end define

;; Logical definition of Cholesky decomposition
;; Use of mbe here is for demonstrative purposes
(define chol ((A matrixp))
 :guard (and (equal (col-count A) (row-count A))
             (equal (mtrans A) A))
 :measure (and (col-count A) (row-count A))
 :verify-guards nil
 (mbe
 :logic
  (b* (;; BASE CASES
       ((unless (mbt (matrixp A))) (m-empty))    ;; If A not a matrix, return empty  
       ((if (m-emptyp A)) A)                     ;; If A empty, return A
       (alph (car (col-car A)))                  ;; alph := "top left" scalar in A
       ((unless (realp alph))                    ;; If alph not real, return a zero 
                (mzero (row-count A)             ;;   matrix of the same dimensions
                       (col-count A)))           ;;   as A
       ((if (<= alph 0))                         ;; If alph not positive, return a 
        (mzero (row-count A)                     ;;   zero matrix of the same 
               (col-count A)))                   ;;   dimensions as A
 
       ;; PARTITION
       (a21 (col-car (row-cdr A)))               ;; [ alph | a12 ] := A
       (a12 (row-car (col-cdr A)))               ;; [ ---------- ]
       (A22 (col-cdr (row-cdr A)))               ;; [ a21  | A22 ]
       (alph (acl2-sqrt alph))                   ;; alph := sqrt(alph)
 
       ;; BASE CASES
       ((if (m-emptyp (col-cdr A)))              ;; If A is a column, return
        (row-cons (list alph)                    ;;   [   1   ] [ a1 ] = [ a1 ] = A
                  (sm* (/ alph)                  ;;   [ a2/a1 ]          [ a2 ]   
                       (row-cdr A))))            ;;   [  ...  ]          [ ...]   
       ((if (m-emptyp (row-cdr A)))              ;; If A is a row, return 
        (row-cons (cons alph a12)                ;;   [ alph a12 ]
                  (m-empty)))
 
       ;; UPDATE
       (a21 (sv* (/ alph) a21))                  ;; a21 := a21 / alph
       (A22 (m+ A22 (sm* -1 (out-* a21 a21)))))  ;; A22 := A22 - a21 * a21T
 
      ;; RECURSE                                 ;;  [ alph | a12       ]
      (row-cons (cons alph a12)                  ;;  [ ---------------- ]
                (col-cons a21 (chol A22))))      ;;  [ a21  | CHOL(A22) ]  
 :exec
   (b* (((if (m-emptyp A)) A)
        (alph (car (col-car A)))
        ((unless (realp alph)) (mzero (row-count A) (col-count A)))
        ((if (<= alph 0))
         (mzero (row-count A)
                (col-count A)))
  
        (a21 (col-car (row-cdr A)))
        (a12 (row-car (col-cdr A)))
        (A22 (col-cdr (row-cdr A)))
        (alph (acl2-sqrt alph))
  
        ;; Base case:
        ;; m = [ a1 a2 ... ] = [ 1 ] [ a1 a2 ... ]
        ((if (or (m-emptyp (row-cdr A)) (m-emptyp (col-cdr A))))
         (row-cons (cons alph nil) (m-empty)))
        ;; Want to set:
        ;;  a21 = a21 / alpha
        ;;  A22 = A22 - out-*(a21, a12)
        (a21 (sv* (/ alph) a21))
        (A22 (m+ A22 (sm* -1 (out-* a21 a21)))))
       (row-cons (cons alph a12)
                 (col-cons a21 (chol A22)))))

 ///
 (defthm row-count-chol
  (implies (matrixp A)
           (equal (row-count (chol A)) (row-count A))))

 (defthm col-count-chol
  (implies (matrixp A)
           (equal (col-count (chol A)) (col-count A))))

 (defthm matrixp-of-chol (matrixp (chol A))
  :rule-classes :type-prescription)

 (verify-guards chol)

 (defthm m-emptyp-chol
  (equal (m-emptyp (chol A))
         (or (m-emptyp A) (not (matrixp A)))))

 ;; theorems about emptiness
 (defthm m-emptyp-row-cdr-/-col-cdr-chol
  (implies (and (matrixp A)
                (equal (col-count A) (row-count A))
                (or (not (m-emptyp (row-cdr A)))
                    (not (m-emptyp (col-cdr A)))))
           (and (not (m-emptyp (row-cdr (chol A))))
                (not (m-emptyp (col-cdr (chol A)))))))

 (defthm col-car-of-chol
  (b* ((a21 (col-car (row-cdr A)))
       (alph (car (row-car A))))
      (implies (and (realp alph) (< 0 alph) (matrixp A))
               (equal (col-car (chol A))
                      (cons (acl2-sqrt alph)
                            (sv* (/ (acl2-sqrt alph)) a21))))))

 (defthm col-car-row-cdr-chol
  (b* ((a21 (col-car (row-cdr A)))
       (alph (car (row-car A))))
      (implies (and (realp alph) (< 0 alph) (matrixp A))
               (equal (col-car (row-cdr (chol A)) )
                      (sv* (/ (acl2-sqrt alph)) a21))))))
;; end define

(local
 (defthm acl2-numberp-of-acl2-sqrt
  (implies (realp a)
           (acl2-numberp (acl2-sqrt a)))))

;; Formal derivation of 'right-looking' Cholesky algorithm
;; View A = LU as
;;
;; [ alph |   * ]   [ lam | 0 ] [ lam | l^T ]
;; [ ---------- ] = [ ------- ] [ --------- ]
;; [ a21  | A22 ]   [   l | L ] [   0 | L^T ]
;;
;; Our assumption was that A22 would be handled by the algorithm recursively:
;;      lam := sqrt(alph)
;;
(encapsulate
 nil

 (local (in-theory (enable chol)))

 (local
  (defthm car-row-car-col-car
   (equal (car (row-car A)) (car (col-car A)))))

 (local
  (defthm type-lemma
   (implies (and (matrixp A)
                 (not (m-emptyp (row-cdr A)))
                 (equal (col-count A) (row-count A)))
            (and (equal (row-count (row-cdr (chol A)))
                        (row-count (row-cdr A)))))))

 (local
  (defthm lemma-1
   (implies (and (matrixp A)
                 (not (m-emptyp (row-cdr A)) )
                 (equal (mtrans A) A)
                 (equal (col-count a) (row-count a)))
            (equal (row-cdr (col-cons (cons (acl2-sqrt (car (col-car a)))
                                            (sv* (/ (acl2-sqrt (car (col-car a))))
                                                 (col-car (row-cdr a))))
                                      (row-cons (vzero (col-count (col-cdr a)))
                                                (get-l (col-cdr (row-cdr (chol a)))))))
                   (col-cons (sv* (/ (acl2-sqrt (car (col-car a))))
                                  (col-car (row-cdr a)))
                             (get-l (col-cdr (row-cdr (chol a)))))))
   :hints (("goal" :use ((:instance col-cons-row-cons
                                    (l (cons (acl2-sqrt (car (col-car a)))
                                             (sv* (/ (acl2-sqrt (car (col-car a))))
                                                  (col-car (row-cdr a)))))
                                    (k (vzero (col-count (col-cdr a))))
                                    (m (get-l (col-cdr (row-cdr (chol a)))))))))))

 (local
  (defthmd lemma-2
   (b* ((alph    (car (row-car A)))
        (L       (get-L (chol A)))
        (Lt      (mtrans L)))
       (implies (and (< 0 alph)
                     (realp alph)
                     (matrixp A)
                     (not (m-emptyp (row-cdr A)) )
                     (equal (mtrans A) A)
                     (equal (col-count A) (row-count A)))
                (equal (row* (col-car Lt) (row-cdr L))
                       (col-car (row-cdr A)))))))

 (defthm chol-expand-layer
  (b* ((alph    (car (row-car A)))
       (L       (get-L (chol A)))
       (Lt      (mtrans L)))
      (implies (and (< 0 alph)
                    (realp alph)
                    (matrixp A)
                    (not (m-emptyp (col-cdr (row-cdr A))))
                    (not (m-emptyp (row-cdr (col-cdr A))))
                    (equal (mtrans A) A)
                    (equal (col-count A) (row-count A)))
               (equal (m* L Lt)
                      (row-cons
                       (row-car A)
                       (col-cons (col-car (row-cdr A))
                                 (m+ (out-* (col-car (row-cdr L))
                                            (row-car (col-cdr Lt)))
                                     (m* (col-cdr (row-cdr L))
                                         (row-cdr (col-cdr Lt)))))))))
  :hints (("Goal" :use ((:instance lemma-2))
                  :in-theory (disable mtrans get-l-col-cons-def)))))
;;; end encapsulate

(define positive-definite-p ((A matrixp))
 :guard (equal (col-count A) (row-count A))
 :measure (and (row-count A) (col-count A))
 :returns (pd booleanp)
 (b* (;; BASE CASES
      ((unless (matrixp A)) nil)                   ;; If A not a matrix, return empty  
      ((if (m-emptyp A)) t)                        ;; If A empty, return A

      ;; CHECK IF DETERMINANT SO FAR IS POSITIVE
      (alph (car (col-car A)))                     ;; alph := "top left" scalar in A
      ((unless (realp alph)) nil)                  ;; If alph not real, return nil
      ((unless (< 0 alph))   nil)                  ;; If alph not positive, return nil
                                                      
      ;; BASE CASES
      ((if (m-emptyp (row-cdr A))) t)              ;; If A is a row, return t                                                                 
      ((if (m-emptyp (col-cdr A))) t)              ;; If A is a column, return t
                                                   
      ;; PARTITION
      (a12     (row-car (col-cdr A)))              ;; [ alph | a12 ] := A                                   
      (a21     (col-car (row-cdr A)))              ;; [ ---------- ]                                        
      (A22     (col-cdr (row-cdr A)))              ;; [ a21  | A22 ] 

      ;; COMPUTE THE SCHUR COMPLEMENT
      (alph    (acl2-sqrt alph))                      
      (a12     (sv* (/ alph) a12))                 
      (a21     (sv* (/ alph) a21))                 
      (A22     (m+ A22 (sm* -1 (out-* a12 a21))))) ;; A22 := A22 - a12 * a21T / alph
     
     ;; RECURSE
     (positive-definite-p A22))                    ;; Check if A22 is positive definite 
 ///

 ;; N + M - N = M
 (local
  (defthm lemma-1
   (implies (and (matrixp m) (matrixp n) (m+-guard m n))
            (equal (m+ n (m+ m (sm* -1 n))) m))))

 (local
  (defthm mtrans-implies-a21-=-a12
   (implies (and (matrixp A)
                 (equal (row-count A) (col-count A))
                 (equal (mtrans A) A))
            (b* ((a21 (col-car (row-cdr A)))
                 (a12 (row-car (col-cdr A))))
                (equal a12 a21)))
   :hints (("Goal" :expand (mtrans A)))))

 (local (in-theory (enable chol rewrap-matrix)))

 (defthm chol-correctness
   (b* ((L       (get-L (chol A)))
        (Lt      (mtrans L)))
       (implies (and (positive-definite-p A)
                     (equal (mtrans A) A)
                     (equal (col-count A) (row-count A)))
                (equal (m* L Lt) A)))
   :hints (("Subgoal *1/5" :use ((:instance rewrap-matrix (m A)))))))

(define lower-tri-p ((A matrixp))
 :measure (and (col-count A) (row-count A))
 :returns (L? booleanp)
 (b* (((unless (matrixp A)) nil)
      ((if (m-emptyp A)) t)
      ((if (m-emptyp (col-cdr A))) t)
      ((if (m-emptyp (row-cdr A)))
           (equal (col-cdr A)
                  (mzero (row-count A) (1- (col-count A))))))
     (and (equal (row-car A)
                 (cons (car (row-car A))
                       (vzero (1- (col-count A)))))
          (lower-tri-p (row-cdr (col-cdr A)))))
 ///

 (defthm lower-tri-p-implies-matrixp
  (implies (lower-tri-p A) (matrixp A)))

 (defthm lower-tri-p-of-get-L
  (lower-tri-p (get-l A))
  :hints (("Goal" :in-theory (enable get-l)))))

(defun-sk chol-fact-exists (A)
  (exists (L) (and (lower-tri-p L)
                   (equal (m* L (mtrans L)) A))))

(defthm cholesky-factorization-theorem
 (implies (and (equal (mtrans A) A)
               (positive-definite-p A)
               (equal (col-count A) (row-count A)))
          (chol-fact-exists A))
 :hints (("Goal"
          :use ((:instance chol-fact-exists-suff (L (get-l (chol A))))))))

(in-theory (disable chol-expand-layer))


(verify-guards guess-num-iters-aux)
;(verify-guards iterate-sqrt-range :hints (("Goal" :cases ((realp high) (realp low)))))
;(verify-guards sqrt-iter)

;; To enable execution, we use sqrt-iter instead of acl2-sqrt. Here eps should
;; be "small" in order for sqrt-iter to be accurate.  Verify guards is set to
;; "nil" because iterate-sqrt-range seemingly cannot be guard verified, and
;; therefore neither can sqrt-iter.  Possible solutions: 
;; 	(1) define a guard-verified version of iterate-sqrt-range for use in an
;;          alternate sqrt function that is otherwise identical to sqrt-iter / 
;; 	    acl2-sqrt; 
;; 	(2) define another sqrt function using a different algorithm and prove
;; 	    it converges to acl2-sqrt. 
;; We perform (2) but keep sqrt-iter here as a placeholder for now (see ACL2
;; proof of Heron's method when available).
(define chol-exec ((A matrixp) (eps realp))
 :guard (and (equal (col-count A) (row-count A))
             (equal (mtrans A) A))
 :measure (and (col-count A) (row-count A))
 :verify-guards nil
 (mbe
  :logic
  (b* (;; BASE CASES
       ((unless (mbt (matrixp A))) (m-empty))         ;; If A not a matrix, return empty 
       ((if (m-emptyp A)) A)                          ;; If A empty, return A
       (alph (car (col-car A)))                       ;; alph := "top left" scalar in A
       ((unless (realp alph))                         ;; If alph not real, return a zero 
                (mzero (row-count A)                  ;;   matrix of the same dimensions
                       (col-count A)))                ;;   as A
       ((if (<= alph 0))                              ;; If alph not positive, return a 
        (mzero (row-count A)                          ;;   zero matrix of the same 
               (col-count A)))                        ;;   dimensions as A
 
       ;; PARTITION
       (a21 (col-car (row-cdr A)))                    ;; [ alph | a12 ] := A
       (a12 (row-car (col-cdr A)))                    ;; [ ---------- ]
       (A22 (col-cdr (row-cdr A)))                    ;; [ a21  | A22 ]
       (alph (sqrt-iter alph eps))                    ;; alph := sqrt(alph)
 
       ;; BASE CASES
       ((if (m-emptyp (col-cdr A)))                   ;; If A is a column, return
        (row-cons (list alph)                         ;;   [   1   ] [ a1 ] = [ a1 ] = A
                  (sm* (/ alph)                       ;;   [ a2/a1 ]          [ a2 ]   
                       (row-cdr A))))                 ;;   [  ...  ]          [ ...]   
       ((if (m-emptyp (row-cdr A)))                   ;; If A is a row, return 
        (row-cons (cons alph a12)                     ;;   [ alph a12 ]
                  (m-empty)))
 
       ;; UPDATE
       (a21 (sv* (/ alph) a21))                       ;; a21 := a21 / alph
       (A22 (m+ A22 (sm* -1 (out-* a21 a21)))))       ;; A22 := A22 - a21 * a21T
 
      ;; RECURSE                                      ;;  [ alph | a12       ]
      (row-cons (cons alph a12)                       ;;  [ ---------------- ]
                (col-cons a21 (chol-exec A22 eps))))  ;;  [ a21  | CHOL(A22) ]  
  :exec
   (b* (((if (m-emptyp A)) A)
        (alph (car (col-car A)))
        ((if (<= alph 0))
         (mzero (row-count A)
                (col-count A)))
  
        (a21 (col-car (row-cdr A)))
        (a12 (row-car (col-cdr A)))
        (A22 (col-cdr (row-cdr A)))
        (alph (sqrt-iter alph eps))
  
        ;; Base case:
        ;; m = [ a1 a2 ... ] = [ 1 ] [ a1 a2 ... ]
        ((if (or (m-emptyp (row-cdr A)) (m-emptyp (col-cdr A))))
         (row-cons (cons alph nil) (m-empty)))
        ;; Want to set:
        ;;  a21 = a21 / alpha
        ;;  A22 = A22 - out-*(a21, a12)
        (a21 (sv* (/ alph) a21))
        (A22 (m+ A22 (sm* -1 (out-* a21 a21)))))
       (row-cons (cons alph a12)
                 (col-cons a21 (chol-exec A22 eps))))))