1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
;; Copyright (C) 2024 Carl Kwan
;;
;; Summary:
;; Defining Cholesky decomposition and proving its correctness.
;;
;; Main definitions:
;; - get-L, get the lower triangular part of a matrix
;; - chol, logical Cholesky decomposition of a matrix
;; - positive-definite-p, recognize a positive definite matrix
;; - chol-fact-exists, posits the existance of a Cholesky decomposition
;; - chol-exec, executable Cholesky decomposition using iterative square root
;;
;; Main theorems:
;; - chol-correctness, correctness of chol
;; - cholesky-factorization-theorem, Cholesky Factorization Theorem
;;
;; Requires:
; cert_param: (uses-acl2r)
(in-package "ACL2")
(include-book "mlayers")
(include-book "msym")
(include-book "msplice")
(include-book "nonstd/nsa/sqrt" :dir :system)
(verify-guards acl2-sqrt)
;; Get lower triangular part of a matrix
;; Do not put 1s on the diagonal
;; [ * * * * * ] [ * ]
;; [ * * * * * ] [ * * ]
;; [ * * * * * ] --> [ * * * ]
;; ... ...
;; [ * ... * * ] [ * ... * * ]
(define get-L ((A matrixp))
:measure (and (col-count A) (row-count A))
:returns L
:verify-guards nil
(b* (((unless (matrixp A)) (m-empty))
((if (m-emptyp A)) A)
((if (m-emptyp (col-cdr A))) A)
((if (m-emptyp (row-cdr A)))
(col-cons (col-car A) (mzero (row-count A)
(1- (col-count A))))))
(row-cons (cons (car (row-car A)) (vzero (1- (col-count A))))
(col-cons (col-car (row-cdr A))
(get-L (row-cdr (col-cdr A))))))
///
(more-returns
;; "Type" theorems
(L (implies (matrixp A) (equal (row-count L) (row-count A)))
:name row-count-get-L)
(L (implies (matrixp A) (equal (col-count L) (col-count A)))
:name col-count-get-L)
(L (matrixp L))
(L (equal (m-emptyp L) (or (m-emptyp A) (not (matrixp A))))
:name m-emptyp-get-L)
(L (implies (and (matrixp A) (not (m-emptyp (col-cdr A))))
(not (m-emptyp (col-cdr L))))
:name m-emptyp-col-cdr-get-L))
;; Necessary for verifying guards
(defthm get-l-col-cons-def
(implies (and (matrixp A)
(not (m-emptyp (col-cdr A)))
(not (m-emptyp (row-cdr A))))
(equal (get-L A)
(col-cons (col-car A)
(row-cons (vzero (1- (col-count A)))
(get-L (row-cdr (col-cdr A)))))))
:hints (("Goal"
:use ((:instance row-cons-col-cons
(m (get-L (row-cdr (col-cdr A))))
(l (cons (car (row-car A)) (vzero (1- (col-count A)))))
(k (col-car (row-cdr A))))))))
(verify-guards get-L)
;; "Unwrapping" theorems
(defthm col-car-get-L
(implies (and (matrixp A))
(equal (col-car (get-L A))
(col-car A))))
(defthm row-car-get-L
(implies (and (matrixp A) (not (m-emptyp A)))
(equal (row-car (get-L A))
(cons (car (row-car A))
(vzero (1- (col-count A)))))))
(defthm col-car-row-cdr-get-L
(implies (and (matrixp A) (not (m-emptyp A)))
(equal (col-car (row-cdr (get-L A)))
(col-car (row-cdr A)))))
;; Move "unwrapping" to inside get-L
(defthm col-cdr-row-cdr-get-L
(implies (matrixp A)
(equal (col-cdr (row-cdr (get-L A)))
(get-L (row-cdr (col-cdr A))))))
;; Move "unwrapping" to inside get-L
(defthm row-cdr-col-cdr-get-L
(implies (matrixp A)
(equal (row-cdr (col-cdr (get-L A)))
(get-L (row-cdr (col-cdr A)))))))
;; end define
;; Logical definition of Cholesky decomposition
;; Use of mbe here is for demonstrative purposes
(define chol ((A matrixp))
:guard (and (equal (col-count A) (row-count A))
(equal (mtrans A) A))
:measure (and (col-count A) (row-count A))
:verify-guards nil
(mbe
:logic
(b* (;; BASE CASES
((unless (mbt (matrixp A))) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) ;; If alph not real, return a zero
(mzero (row-count A) ;; matrix of the same dimensions
(col-count A))) ;; as A
((if (<= alph 0)) ;; If alph not positive, return a
(mzero (row-count A) ;; zero matrix of the same
(col-count A))) ;; dimensions as A
;; PARTITION
(a21 (col-car (row-cdr A))) ;; [ alph | a12 ] := A
(a12 (row-car (col-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]
(alph (acl2-sqrt alph)) ;; alph := sqrt(alph)
;; BASE CASES
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [ 1 ] [ a1 ] = [ a1 ] = A
(sm* (/ alph) ;; [ a2/a1 ] [ a2 ]
(row-cdr A)))) ;; [ ... ] [ ...]
((if (m-emptyp (row-cdr A))) ;; If A is a row, return
(row-cons (cons alph a12) ;; [ alph a12 ]
(m-empty)))
;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a21))))) ;; A22 := A22 - a21 * a21T
;; RECURSE ;; [ alph | a12 ]
(row-cons (cons alph a12) ;; [ ---------------- ]
(col-cons a21 (chol A22)))) ;; [ a21 | CHOL(A22) ]
:exec
(b* (((if (m-emptyp A)) A)
(alph (car (col-car A)))
((unless (realp alph)) (mzero (row-count A) (col-count A)))
((if (<= alph 0))
(mzero (row-count A)
(col-count A)))
(a21 (col-car (row-cdr A)))
(a12 (row-car (col-cdr A)))
(A22 (col-cdr (row-cdr A)))
(alph (acl2-sqrt alph))
;; Base case:
;; m = [ a1 a2 ... ] = [ 1 ] [ a1 a2 ... ]
((if (or (m-emptyp (row-cdr A)) (m-emptyp (col-cdr A))))
(row-cons (cons alph nil) (m-empty)))
;; Want to set:
;; a21 = a21 / alpha
;; A22 = A22 - out-*(a21, a12)
(a21 (sv* (/ alph) a21))
(A22 (m+ A22 (sm* -1 (out-* a21 a21)))))
(row-cons (cons alph a12)
(col-cons a21 (chol A22)))))
///
(defthm row-count-chol
(implies (matrixp A)
(equal (row-count (chol A)) (row-count A))))
(defthm col-count-chol
(implies (matrixp A)
(equal (col-count (chol A)) (col-count A))))
(defthm matrixp-of-chol (matrixp (chol A))
:rule-classes :type-prescription)
(verify-guards chol)
(defthm m-emptyp-chol
(equal (m-emptyp (chol A))
(or (m-emptyp A) (not (matrixp A)))))
;; theorems about emptiness
(defthm m-emptyp-row-cdr-/-col-cdr-chol
(implies (and (matrixp A)
(equal (col-count A) (row-count A))
(or (not (m-emptyp (row-cdr A)))
(not (m-emptyp (col-cdr A)))))
(and (not (m-emptyp (row-cdr (chol A))))
(not (m-emptyp (col-cdr (chol A)))))))
(defthm col-car-of-chol
(b* ((a21 (col-car (row-cdr A)))
(alph (car (row-car A))))
(implies (and (realp alph) (< 0 alph) (matrixp A))
(equal (col-car (chol A))
(cons (acl2-sqrt alph)
(sv* (/ (acl2-sqrt alph)) a21))))))
(defthm col-car-row-cdr-chol
(b* ((a21 (col-car (row-cdr A)))
(alph (car (row-car A))))
(implies (and (realp alph) (< 0 alph) (matrixp A))
(equal (col-car (row-cdr (chol A)) )
(sv* (/ (acl2-sqrt alph)) a21))))))
;; end define
(local
(defthm acl2-numberp-of-acl2-sqrt
(implies (realp a)
(acl2-numberp (acl2-sqrt a)))))
;; Formal derivation of 'right-looking' Cholesky algorithm
;; View A = LU as
;;
;; [ alph | * ] [ lam | 0 ] [ lam | l^T ]
;; [ ---------- ] = [ ------- ] [ --------- ]
;; [ a21 | A22 ] [ l | L ] [ 0 | L^T ]
;;
;; Our assumption was that A22 would be handled by the algorithm recursively:
;; lam := sqrt(alph)
;;
(encapsulate
nil
(local (in-theory (enable chol)))
(local
(defthm car-row-car-col-car
(equal (car (row-car A)) (car (col-car A)))))
(local
(defthm type-lemma
(implies (and (matrixp A)
(not (m-emptyp (row-cdr A)))
(equal (col-count A) (row-count A)))
(and (equal (row-count (row-cdr (chol A)))
(row-count (row-cdr A)))))))
(local
(defthm lemma-1
(implies (and (matrixp A)
(not (m-emptyp (row-cdr A)) )
(equal (mtrans A) A)
(equal (col-count a) (row-count a)))
(equal (row-cdr (col-cons (cons (acl2-sqrt (car (col-car a)))
(sv* (/ (acl2-sqrt (car (col-car a))))
(col-car (row-cdr a))))
(row-cons (vzero (col-count (col-cdr a)))
(get-l (col-cdr (row-cdr (chol a)))))))
(col-cons (sv* (/ (acl2-sqrt (car (col-car a))))
(col-car (row-cdr a)))
(get-l (col-cdr (row-cdr (chol a)))))))
:hints (("goal" :use ((:instance col-cons-row-cons
(l (cons (acl2-sqrt (car (col-car a)))
(sv* (/ (acl2-sqrt (car (col-car a))))
(col-car (row-cdr a)))))
(k (vzero (col-count (col-cdr a))))
(m (get-l (col-cdr (row-cdr (chol a)))))))))))
(local
(defthmd lemma-2
(b* ((alph (car (row-car A)))
(L (get-L (chol A)))
(Lt (mtrans L)))
(implies (and (< 0 alph)
(realp alph)
(matrixp A)
(not (m-emptyp (row-cdr A)) )
(equal (mtrans A) A)
(equal (col-count A) (row-count A)))
(equal (row* (col-car Lt) (row-cdr L))
(col-car (row-cdr A)))))))
(defthm chol-expand-layer
(b* ((alph (car (row-car A)))
(L (get-L (chol A)))
(Lt (mtrans L)))
(implies (and (< 0 alph)
(realp alph)
(matrixp A)
(not (m-emptyp (col-cdr (row-cdr A))))
(not (m-emptyp (row-cdr (col-cdr A))))
(equal (mtrans A) A)
(equal (col-count A) (row-count A)))
(equal (m* L Lt)
(row-cons
(row-car A)
(col-cons (col-car (row-cdr A))
(m+ (out-* (col-car (row-cdr L))
(row-car (col-cdr Lt)))
(m* (col-cdr (row-cdr L))
(row-cdr (col-cdr Lt)))))))))
:hints (("Goal" :use ((:instance lemma-2))
:in-theory (disable mtrans get-l-col-cons-def)))))
;;; end encapsulate
(define positive-definite-p ((A matrixp))
:guard (equal (col-count A) (row-count A))
:measure (and (row-count A) (col-count A))
:returns (pd booleanp)
(b* (;; BASE CASES
((unless (matrixp A)) nil) ;; If A not a matrix, return empty
((if (m-emptyp A)) t) ;; If A empty, return A
;; CHECK IF DETERMINANT SO FAR IS POSITIVE
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) nil) ;; If alph not real, return nil
((unless (< 0 alph)) nil) ;; If alph not positive, return nil
;; BASE CASES
((if (m-emptyp (row-cdr A))) t) ;; If A is a row, return t
((if (m-emptyp (col-cdr A))) t) ;; If A is a column, return t
;; PARTITION
(a12 (row-car (col-cdr A))) ;; [ alph | a12 ] := A
(a21 (col-car (row-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]
;; COMPUTE THE SCHUR COMPLEMENT
(alph (acl2-sqrt alph))
(a12 (sv* (/ alph) a12))
(a21 (sv* (/ alph) a21))
(A22 (m+ A22 (sm* -1 (out-* a12 a21))))) ;; A22 := A22 - a12 * a21T / alph
;; RECURSE
(positive-definite-p A22)) ;; Check if A22 is positive definite
///
;; N + M - N = M
(local
(defthm lemma-1
(implies (and (matrixp m) (matrixp n) (m+-guard m n))
(equal (m+ n (m+ m (sm* -1 n))) m))))
(local
(defthm mtrans-implies-a21-=-a12
(implies (and (matrixp A)
(equal (row-count A) (col-count A))
(equal (mtrans A) A))
(b* ((a21 (col-car (row-cdr A)))
(a12 (row-car (col-cdr A))))
(equal a12 a21)))
:hints (("Goal" :expand (mtrans A)))))
(local (in-theory (enable chol rewrap-matrix)))
(defthm chol-correctness
(b* ((L (get-L (chol A)))
(Lt (mtrans L)))
(implies (and (positive-definite-p A)
(equal (mtrans A) A)
(equal (col-count A) (row-count A)))
(equal (m* L Lt) A)))
:hints (("Subgoal *1/5" :use ((:instance rewrap-matrix (m A)))))))
(define lower-tri-p ((A matrixp))
:measure (and (col-count A) (row-count A))
:returns (L? booleanp)
(b* (((unless (matrixp A)) nil)
((if (m-emptyp A)) t)
((if (m-emptyp (col-cdr A))) t)
((if (m-emptyp (row-cdr A)))
(equal (col-cdr A)
(mzero (row-count A) (1- (col-count A))))))
(and (equal (row-car A)
(cons (car (row-car A))
(vzero (1- (col-count A)))))
(lower-tri-p (row-cdr (col-cdr A)))))
///
(defthm lower-tri-p-implies-matrixp
(implies (lower-tri-p A) (matrixp A)))
(defthm lower-tri-p-of-get-L
(lower-tri-p (get-l A))
:hints (("Goal" :in-theory (enable get-l)))))
(defun-sk chol-fact-exists (A)
(exists (L) (and (lower-tri-p L)
(equal (m* L (mtrans L)) A))))
(defthm cholesky-factorization-theorem
(implies (and (equal (mtrans A) A)
(positive-definite-p A)
(equal (col-count A) (row-count A)))
(chol-fact-exists A))
:hints (("Goal"
:use ((:instance chol-fact-exists-suff (L (get-l (chol A))))))))
(in-theory (disable chol-expand-layer))
(verify-guards guess-num-iters-aux)
;(verify-guards iterate-sqrt-range :hints (("Goal" :cases ((realp high) (realp low)))))
;(verify-guards sqrt-iter)
;; To enable execution, we use sqrt-iter instead of acl2-sqrt. Here eps should
;; be "small" in order for sqrt-iter to be accurate. Verify guards is set to
;; "nil" because iterate-sqrt-range seemingly cannot be guard verified, and
;; therefore neither can sqrt-iter. Possible solutions:
;; (1) define a guard-verified version of iterate-sqrt-range for use in an
;; alternate sqrt function that is otherwise identical to sqrt-iter /
;; acl2-sqrt;
;; (2) define another sqrt function using a different algorithm and prove
;; it converges to acl2-sqrt.
;; We perform (2) but keep sqrt-iter here as a placeholder for now (see ACL2
;; proof of Heron's method when available).
(define chol-exec ((A matrixp) (eps realp))
:guard (and (equal (col-count A) (row-count A))
(equal (mtrans A) A))
:measure (and (col-count A) (row-count A))
:verify-guards nil
(mbe
:logic
(b* (;; BASE CASES
((unless (mbt (matrixp A))) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) ;; If alph not real, return a zero
(mzero (row-count A) ;; matrix of the same dimensions
(col-count A))) ;; as A
((if (<= alph 0)) ;; If alph not positive, return a
(mzero (row-count A) ;; zero matrix of the same
(col-count A))) ;; dimensions as A
;; PARTITION
(a21 (col-car (row-cdr A))) ;; [ alph | a12 ] := A
(a12 (row-car (col-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]
(alph (sqrt-iter alph eps)) ;; alph := sqrt(alph)
;; BASE CASES
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [ 1 ] [ a1 ] = [ a1 ] = A
(sm* (/ alph) ;; [ a2/a1 ] [ a2 ]
(row-cdr A)))) ;; [ ... ] [ ...]
((if (m-emptyp (row-cdr A))) ;; If A is a row, return
(row-cons (cons alph a12) ;; [ alph a12 ]
(m-empty)))
;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a21))))) ;; A22 := A22 - a21 * a21T
;; RECURSE ;; [ alph | a12 ]
(row-cons (cons alph a12) ;; [ ---------------- ]
(col-cons a21 (chol-exec A22 eps)))) ;; [ a21 | CHOL(A22) ]
:exec
(b* (((if (m-emptyp A)) A)
(alph (car (col-car A)))
((if (<= alph 0))
(mzero (row-count A)
(col-count A)))
(a21 (col-car (row-cdr A)))
(a12 (row-car (col-cdr A)))
(A22 (col-cdr (row-cdr A)))
(alph (sqrt-iter alph eps))
;; Base case:
;; m = [ a1 a2 ... ] = [ 1 ] [ a1 a2 ... ]
((if (or (m-emptyp (row-cdr A)) (m-emptyp (col-cdr A))))
(row-cons (cons alph nil) (m-empty)))
;; Want to set:
;; a21 = a21 / alpha
;; A22 = A22 - out-*(a21, a12)
(a21 (sv* (/ alph) a21))
(A22 (m+ A22 (sm* -1 (out-* a21 a21)))))
(row-cons (cons alph a12)
(col-cons a21 (chol-exec A22 eps))))))
|