1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
;; Copyright (C) 2024 Carl Kwan
;;
;; Defining matrix multiplication via the outer product
;; Summary:
;; The events in this file defines matrix multiplication via the outer
;; product and proves its equivalence to matrix multiplication defined
;; via row multiplication. The main definitions in this file are:
;;
;; - row-out-*, which defines the outer product between vectors row-wise
;; - col-out-*, which defines the outer product between vectors column-wise
;; - out-*, which defines the outer product via col-out-*
;; - m*-by-out-*, which defines matrix multiplication via out-*
;;
;; The main theorems in this file are:
;;
;; - col-out-*-row-out-*, which states the equivalence between row- /
;; column-wise outer products
;; - m*-m*-by-out-*, which states m*-by-out-* is equivalent to m* under m*-guard
;;
;; Requires:
(in-package "ACL2")
(include-book "std/util/define" :dir :system)
(include-book "workshops/2003/hendrix/support/mtrans" :dir :system)
;; Define the outer product row-wise:
;; u x v = [ u_1 v ]
;; [ u_2 v ]
;; [ ... ]
;; [ u_n v ]
;; and prove basic properties:
;; cu x v = c (u x v)
;; u x cv = c (u x v)
;; ( u + v ) x w = u x w + v x w
;; u x ( v + w ) = u x v + u x w
(define row-out-* (u v)
:verify-guards nil
:returns out
:guard (and (mvectorp u) (mvectorp v))
(if (or (endp u) (endp v))
(m-empty)
(row-cons (sv* (car u) v)
(row-out-* (cdr u) v)))
///
(more-returns
(out (= (row-count out) (if (consp v) (len u) 0))
:name row-count-of-row-out-*)
(out (= (col-count out) (if (consp u) (len v) 0))
:name col-count-of-row-out-*)
(out (implies (or (endp u) (endp v)) (m-emptyp out))
:name m-emptyp-row-out-*)
(out (matrixp out)
:rule-classes (:rewrite :type-prescription)
:hints (("Subgoal *1/2" :use ((:instance matrixp-row-cons
(l (sv* (car u) v))
(m (row-out-* (cdr u) v))))))))
(verify-guards row-out-*)
(defthm linearity-sv*-row-out-*
(equal (row-out-* (sv* c u) v)
(sm* c (row-out-* u v))))
(defthm linearity-row-out-*-sv*
(equal (row-out-* u (sv* c v))
(sm* c (row-out-* u v))))
(local
(defthm lemma-1
(implies (matrixp m) (equal (m+ m nil) m))))
(local
(defthm lemma-2
(implies (and (mvectorp u) (not (consp v))) (equal (v+ u v) u))))
(defthm distributivity-v+-row-out-*
(implies (mvectorp u)
(equal (row-out-* (v+ u v) w)
(m+ (row-out-* u w) (row-out-* v w)))))
(defthm distributivity-row-out-*-v+
(implies (mvectorp v)
(equal (row-out-* u (v+ v w))
(m+ (row-out-* u v) (row-out-* u w))))))
;; Define the outer product column-wise:
;; u x v = [ u v_1 | u v_2 | ... | u v_n ]
(define col-out-* (u v)
:verify-guards nil
:returns out
:guard (and (mvectorp u) (mvectorp v))
(if (or (endp u) (endp v))
(m-empty)
(col-cons (sv* (car v) u)
(col-out-* u (cdr v))))
///
(more-returns
(out (= (row-count out) (if (consp v) (len u) 0))
:name row-count-of-col-out-*)
(out (= (col-count out) (if (consp u) (len v) 0))
:hints (("Goal" :in-theory (enable col-count col-cons)))
:name col-count-of-col-out-*)
(out (implies (or (endp u) (endp v)) (m-emptyp out))
:name m-emptyp-col-out-*)
(out (matrixp out)
:rule-classes (:rewrite :type-prescription)
:hints (("Subgoal *1/2" :use ((:instance matrixp-col-cons
(l (sv* (car v) u))
(m (col-out-* u (cdr v)))))))))
(verify-guards col-out-*)
(defthm mtrans-row-out-*-col-out-*
(equal (mtrans (row-out-* u v)) (col-out-* v u))
:hints (("Goal" :in-theory (enable mtrans row-out-*)))))
;; Show that
;; u x v = [ u_1 v ] = [ u v_1 | u v_2 | ... | u v_n ]
;; [ u_2 v ]
;; [ ... ]
;; [ u_n v ]
(defthmd col-out-*-row-out-*
(equal (col-out-* u v) (row-out-* u v))
:hints (("Goal" :in-theory (enable col-out-* row-out-* col-cons row-cons))))
(define out-* (u v)
:guard (and (mvectorp u) (mvectorp v))
:returns out
(col-out-* u v)
///
(more-returns
(out (= (row-count out) (if (consp v) (len u) 0))
:name row-count-out-*)
(out (= (col-count out) (if (consp u) (len v) 0))
:name col-count-out-*)
(out (implies (or (endp u) (endp v)) (m-emptyp out))
:name m-emptyp-out-*)
(out (matrixp out)
:rule-classes (:rewrite :type-prescription)))
(defthm out-*-col-def
(equal (out-* u v)
(if (or (endp u) (endp v))
(m-empty)
(col-cons (sv* (car v) u)
(col-out-* u (cdr v)))))
:hints (("Goal" :in-theory (enable col-out-*)))
:rule-classes ((:definition)))
;; "Entry" theorems shouldn't be necessary but mentioned here for completeness
;(defthmd nth-col-of-out-*
; (implies (and (mvectorp u) (mvectorp v))
; (equal (col n (out-* u v))
; (sv* (nth n v) u))))
(local (in-theory (enable col-out-*-row-out-*)))
(defthm mtrans-out-*
(equal (mtrans (out-* u v)) (out-* v u)))
(defthmd linearity-sv*-out-*
(equal (out-* (sv* c u) v)
(sm* c (out-* u v))))
(defthmd linearity-out-*-sv*
(equal (out-* u (sv* c v))
(sm* c (out-* u v))))
(defthmd distributivity-v+-out-*
(implies (mvectorp u)
(equal (out-* (v+ u v) w)
(m+ (out-* u w) (out-* v w)))))
(defthmd distributivity-out-*-v+
(implies (mvectorp v)
(equal (out-* u (v+ v w))
(m+ (out-* u v) (out-* u w)))))
;; Row definition of out-* (can change to col definition if necessary)
(defthm out-*-row-def
(equal (out-* u v)
(if (or (endp u) (endp v))
(m-empty)
(row-cons (sv* (car u) v)
(out-* (cdr u) v))))
:hints (("Goal" :in-theory (enable col-out-* row-out-*)))
:rule-classes ((:definition))))
;; Disable many theorems to avoid rewriting in the wrong direction
;; In principle, we only need m*-m*-by-out-* at the end
(in-theory (disable out-*-col-def
row-out-*
col-out-*
row-count-of-row-out-*
col-count-of-row-out-*
m-emptyp-row-out-*
matrixp-of-row-out-*
linearity-sv*-row-out-*
linearity-row-out-*-sv*
distributivity-v+-row-out-*
distributivity-row-out-*-v+
row-count-of-col-out-*
col-count-of-col-out-*
m-emptyp-col-out-*
matrixp-of-col-out-*
mtrans-row-out-*-col-out-* ))
(define m*-by-out-* (m n)
:guard (m*-guard m n)
:returns prod
:verify-guards nil
(if (or (m-emptyp m) (m-emptyp n))
(m-empty)
;; 1 x 1 case required to verify guards for m+
(if (or (m-emptyp (col-cdr m)) (m-emptyp (row-cdr n)))
(out-* (col-car m) (row-car n))
(m+ (out-* (col-car m) (row-car n))
(m*-by-out-* (col-cdr m) (row-cdr n)))))
///
;; Lemma for proving dimension properties of matrix multiplication via outer products
(local
(defthm lemma-1
(and (equal (row-count (m*-by-out-* m n))
(row-count (out-* (col-car m) (row-car n))))
(equal (col-count (m*-by-out-* m n))
(col-count (out-* (col-car m) (row-car n)))))
:hints (("Goal" :in-theory (e/d (m-emptyp row-car col-car) ())))))
;; Basic "type" theorems
(more-returns
(prod (implies (matrixp m)
(equal (row-count prod)
(if (consp (row-car n)) (row-count m) 0)))
:hints (("Goal" :use ((:instance row-count-out-*
(u (col-car m))
(v (row-car n))))))
:name row-count-m*-by-out-*)
(prod (implies (and (matrixp m) (matrixp n))
(equal (row-count prod)
(if (m-emptyp n) 0 (row-count m))))
:name row-count-m*-by-out-*-when-matrixp)
(prod (implies (matrixp n)
(equal (col-count prod)
(if (consp (col-car m)) (col-count n) 0)))
:name col-count-m*-by-out-*)
(prod (implies (and (matrixp m) (matrixp n))
(equal (col-count prod)
(if (m-emptyp m) 0 (col-count n))))
:name col-count-m*-by-out-*-when-matrixp)
(prod (matrixp prod)
:hints (("Goal" :in-theory (disable m+ out-*-row-def) ))
:rule-classes (:rewrite :type-prescription))
(prod (implies (or (not (consp (row-car n)))
(not (consp (col-car m))))
(equal prod (m-empty)))
:name m-empty-m*-by-out-*))
(verify-guards m*-by-out-*)
; (defthmd row-car-m*-by-out-*
; (implies (and (m*-guard m n)
; (not (m-emptyp (row-cdr m))))
; (equal (row-car (m*-by-out-* m n))
; (col* (row-car m) n)))
; :hints (("Goal" :in-theory (disable m+-comm))))
;
; (defthmd row-cdr-m*-by-out-*
; (implies (and (m*-guard m n)
; (not (m-emptyp (row-cdr m))))
; (equal (row-cdr (m*-by-out-* m n))
; (m*-by-out-* (row-cdr m) n))))
(defthmd m*-by-out-*-row-def
(implies (and (matrixp m)
(matrixp n)
(or (equal (col-count m) (row-count n))
(m-emptyp m)
(m-emptyp n)))
(equal (m*-by-out-* m n)
(if (or (m-emptyp m) (m-emptyp n))
(m-empty)
(if (m-emptyp (row-cdr m))
(row-cons (col* (row-car m) n) nil)
(row-cons (col* (row-car m) n)
(m*-by-out-* (row-cdr m) n))))))
:rule-classes :definition)
(defthmd m*-m*-by-out-*
(implies (m*-guard m n)
(equal (m* m n)
(m*-by-out-* m n)))
:hints (("Goal" :in-theory (enable m*-by-out-*-row-def)))))
|