File: mout.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (300 lines) | stat: -rw-r--r-- 10,210 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
;; Copyright (C) 2024 Carl Kwan
;;
;; Defining matrix multiplication via the outer product
;; Summary:
;;      The events in this file defines matrix multiplication via the outer
;;      product and proves its equivalence to matrix multiplication defined
;;      via row multiplication. The main definitions in this file are:
;;
;;      - row-out-*, which defines the outer product between vectors row-wise
;;      - col-out-*, which defines the outer product between vectors column-wise
;;      - out-*, which defines the outer product via col-out-*
;;      - m*-by-out-*, which defines matrix multiplication via out-*
;;
;;      The main theorems in this file are:
;;
;;      - col-out-*-row-out-*, which states the equivalence between row- /
;;        column-wise outer products
;;      - m*-m*-by-out-*, which states m*-by-out-* is equivalent to m* under m*-guard
;;
;; Requires:
(in-package "ACL2")
(include-book "std/util/define" :dir :system)
(include-book "workshops/2003/hendrix/support/mtrans" :dir :system)

;; Define the outer product row-wise:
;; u x v = [ u_1 v ]
;;         [ u_2 v ]
;;         [ ...   ]
;;         [ u_n v ]
;; and prove basic properties:
;;   cu x v = c (u x v)
;;   u x cv = c (u x v)
;;   ( u + v ) x w = u x w + v x w
;;   u x ( v + w ) = u x v + u x w
(define row-out-* (u v)
 :verify-guards nil
 :returns out
 :guard (and (mvectorp u) (mvectorp v))
 (if (or (endp u) (endp v))
     (m-empty)
     (row-cons (sv* (car u) v)
               (row-out-* (cdr u) v)))
 ///
 (more-returns
  (out (= (row-count out) (if (consp v) (len u) 0))
       :name row-count-of-row-out-*)
  (out (= (col-count out) (if (consp u) (len v) 0))
       :name col-count-of-row-out-*)
  (out (implies (or (endp u) (endp v)) (m-emptyp out))
       :name m-emptyp-row-out-*)
  (out (matrixp out)
       :rule-classes (:rewrite :type-prescription)
       :hints (("Subgoal *1/2" :use ((:instance matrixp-row-cons
                                                (l (sv* (car u) v))
                                                (m (row-out-* (cdr u) v))))))))
 (verify-guards row-out-*)

 (defthm linearity-sv*-row-out-*
  (equal (row-out-* (sv* c u) v)
         (sm* c (row-out-* u v))))

 (defthm linearity-row-out-*-sv*
  (equal (row-out-* u (sv* c v))
         (sm* c (row-out-* u v))))

 (local
  (defthm lemma-1
   (implies (matrixp m) (equal (m+ m nil) m))))

 (local
  (defthm lemma-2
   (implies (and (mvectorp u) (not (consp v))) (equal (v+ u v) u))))

 (defthm distributivity-v+-row-out-*
  (implies (mvectorp u)
           (equal (row-out-* (v+ u v) w)
                  (m+ (row-out-* u w) (row-out-* v w)))))

 (defthm distributivity-row-out-*-v+
  (implies (mvectorp v)
           (equal (row-out-* u (v+ v w))
                  (m+ (row-out-* u v) (row-out-* u w))))))

;; Define the outer product column-wise:
;; u x v = [ u v_1 | u v_2 | ... | u v_n ]
(define col-out-* (u v)
 :verify-guards nil
 :returns out
 :guard (and (mvectorp u) (mvectorp v))
 (if (or (endp u) (endp v))
     (m-empty)
     (col-cons (sv* (car v) u)
               (col-out-* u (cdr v))))
 ///
 (more-returns
  (out (= (row-count out) (if (consp v) (len u) 0))
       :name row-count-of-col-out-*)
  (out (= (col-count out) (if (consp u) (len v) 0))
       :hints (("Goal" :in-theory (enable col-count col-cons)))
       :name col-count-of-col-out-*)
  (out (implies (or (endp u) (endp v)) (m-emptyp out))
       :name m-emptyp-col-out-*)
  (out (matrixp out)
       :rule-classes (:rewrite :type-prescription)
       :hints (("Subgoal *1/2" :use ((:instance matrixp-col-cons
                                                (l (sv* (car v) u))
                                                (m (col-out-* u (cdr v)))))))))
 (verify-guards col-out-*)

 (defthm mtrans-row-out-*-col-out-*
  (equal (mtrans (row-out-* u v)) (col-out-* v u))
  :hints (("Goal" :in-theory (enable mtrans row-out-*)))))

;; Show that
;; u x v = [ u_1 v ] = [ u v_1 | u v_2 | ... | u v_n ]
;;         [ u_2 v ]
;;         [ ...   ]
;;         [ u_n v ]

(defthmd col-out-*-row-out-*
 (equal (col-out-* u v) (row-out-* u v))
 :hints (("Goal" :in-theory (enable col-out-* row-out-* col-cons row-cons))))

(define out-* (u v)
 :guard (and (mvectorp u) (mvectorp v))
 :returns out
 (col-out-* u v)
 ///
 (more-returns
  (out (= (row-count out) (if (consp v) (len u) 0))
       :name row-count-out-*)
  (out (= (col-count out) (if (consp u) (len v) 0))
       :name col-count-out-*)
  (out (implies (or (endp u) (endp v)) (m-emptyp out))
       :name m-emptyp-out-*)
  (out (matrixp out)
       :rule-classes (:rewrite :type-prescription)))

 (defthm out-*-col-def
  (equal (out-* u v)
         (if (or (endp u) (endp v))
             (m-empty)
             (col-cons (sv* (car v) u)
                       (col-out-* u (cdr v)))))
  :hints (("Goal" :in-theory (enable col-out-*)))
  :rule-classes ((:definition)))

 ;; "Entry" theorems shouldn't be necessary but mentioned here for completeness
 ;(defthmd nth-col-of-out-*
 ; (implies (and (mvectorp u) (mvectorp v))
 ;          (equal (col n (out-* u v))
 ;                 (sv* (nth n v) u))))

 (local (in-theory (enable col-out-*-row-out-*)))

 (defthm mtrans-out-*
  (equal (mtrans (out-* u v)) (out-* v u)))

 (defthmd linearity-sv*-out-*
  (equal (out-* (sv* c u) v)
         (sm* c (out-* u v))))

 (defthmd linearity-out-*-sv*
  (equal (out-* u (sv* c v))
         (sm* c (out-* u v))))

 (defthmd distributivity-v+-out-*
  (implies (mvectorp u)
           (equal (out-* (v+ u v) w)
                  (m+ (out-* u w) (out-* v w)))))

 (defthmd distributivity-out-*-v+
  (implies (mvectorp v)
           (equal (out-* u (v+ v w))
                  (m+ (out-* u v) (out-* u w)))))

;; Row definition of out-* (can change to col definition if necessary)
(defthm out-*-row-def
  (equal (out-* u v)
         (if (or (endp u) (endp v))
             (m-empty)
             (row-cons (sv* (car u) v)
                       (out-* (cdr u) v))))
  :hints (("Goal" :in-theory (enable col-out-* row-out-*)))
  :rule-classes ((:definition))))

;; Disable many theorems to avoid rewriting in the wrong direction
;; In principle, we only need m*-m*-by-out-* at the end
(in-theory (disable out-*-col-def

                    row-out-*
                    col-out-*

                    row-count-of-row-out-*
                    col-count-of-row-out-*
                    m-emptyp-row-out-*
                    matrixp-of-row-out-*

                    linearity-sv*-row-out-*
                    linearity-row-out-*-sv*
                    distributivity-v+-row-out-*
                    distributivity-row-out-*-v+

                    row-count-of-col-out-*
                    col-count-of-col-out-*
                    m-emptyp-col-out-*
                    matrixp-of-col-out-*

                    mtrans-row-out-*-col-out-* ))

(define m*-by-out-* (m n)
 :guard (m*-guard m n)
 :returns prod
 :verify-guards nil
 (if (or (m-emptyp m) (m-emptyp n))
     (m-empty)
     ;; 1 x 1 case required to verify guards for m+
     (if (or (m-emptyp (col-cdr m)) (m-emptyp (row-cdr n)))
         (out-* (col-car m) (row-car n))
         (m+ (out-* (col-car m) (row-car n))
             (m*-by-out-* (col-cdr m) (row-cdr n)))))
 ///
 ;; Lemma for proving dimension properties of matrix multiplication via outer products
 (local
  (defthm lemma-1
   (and (equal (row-count (m*-by-out-* m n))
               (row-count (out-* (col-car m) (row-car n))))
        (equal (col-count (m*-by-out-* m n))
               (col-count (out-* (col-car m) (row-car n)))))
   :hints (("Goal" :in-theory (e/d (m-emptyp row-car col-car) ())))))

 ;; Basic "type" theorems
 (more-returns
  (prod (implies (matrixp m)
                 (equal (row-count prod)
                        (if (consp (row-car n)) (row-count m) 0)))
        :hints (("Goal" :use ((:instance row-count-out-*
                                         (u (col-car m))
                                         (v (row-car n))))))
        :name row-count-m*-by-out-*)

  (prod (implies (and (matrixp m) (matrixp n))
                 (equal (row-count prod)
                        (if (m-emptyp n) 0 (row-count m))))
        :name row-count-m*-by-out-*-when-matrixp)

  (prod (implies (matrixp n)
                 (equal (col-count prod)
                        (if (consp (col-car m)) (col-count n) 0)))
        :name col-count-m*-by-out-*)

  (prod (implies (and (matrixp m) (matrixp n))
                 (equal (col-count prod)
                        (if (m-emptyp m) 0 (col-count n))))
        :name col-count-m*-by-out-*-when-matrixp)

  (prod (matrixp prod)
        :hints (("Goal" :in-theory (disable m+ out-*-row-def) ))
        :rule-classes (:rewrite :type-prescription))

  (prod (implies (or (not (consp (row-car n)))
                     (not (consp (col-car m))))
                 (equal prod (m-empty)))
        :name m-empty-m*-by-out-*))

 (verify-guards m*-by-out-*)

; (defthmd row-car-m*-by-out-*
;  (implies (and (m*-guard m n)
;                (not (m-emptyp (row-cdr m))))
;           (equal (row-car (m*-by-out-* m n))
;                  (col* (row-car m) n)))
;  :hints (("Goal" :in-theory (disable m+-comm))))
;
; (defthmd row-cdr-m*-by-out-*
;  (implies (and (m*-guard m n)
;                (not (m-emptyp (row-cdr m))))
;           (equal (row-cdr (m*-by-out-* m n))
;                  (m*-by-out-* (row-cdr m) n))))

 (defthmd m*-by-out-*-row-def
   (implies (and (matrixp m)
       	         (matrixp n)
       	         (or (equal (col-count m) (row-count n))
       	             (m-emptyp m)
       	             (m-emptyp n)))
            (equal (m*-by-out-* m n)
       	           (if (or (m-emptyp m) (m-emptyp n))
       	               (m-empty)
       	       	       (if (m-emptyp (row-cdr m))
       	       	           (row-cons (col* (row-car m) n) nil)
       	       	           (row-cons (col* (row-car m) n)
       	       	                     (m*-by-out-* (row-cdr m) n))))))
   :rule-classes :definition)

  (defthmd m*-m*-by-out-*
    (implies (m*-guard m n)
             (equal (m* m n)
                    (m*-by-out-* m n)))
    :hints (("Goal" :in-theory (enable m*-by-out-*-row-def)))))