1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
(in-package "ACL2")
; file-system-2.lisp Mihir Mehta
; Here we define the rudiments of a file system with length tracking. We first
; start with a file-system recognizer, and then we define various file-system
; operations.
; The important functions are l2-to-l1-fs, l2-stat, l2-rdchs and
; l2-wrchs. Each of them is preceded by an explanatory comment. Equivalence
; theorems are stated and proved between each of these and the corresponding
; function in file-system-1.lisp. Moreover, the theorems l2-read-after-write-1
; and l2-read-after-write-2 prove two important properties of l2-rdchs and
; l2-wrchs anew, although they were proved in file-system-1 for the filesystem
; described therein.
(include-book "file-system-1")
; This function defines a valid filesystem. It's an alist where all the cars
; are symbols and all the cdrs are either further filesystems or files,
; separated into text (a string) and metadata (currently, only file length).
(defun l2-fs-p (fs)
(declare (xargs :guard t))
(if (atom fs)
(null fs)
(and (let ((directory-or-file-entry (car fs)))
(if (atom directory-or-file-entry)
nil
(let ((name (car directory-or-file-entry))
(entry (cdr directory-or-file-entry)))
(and (symbolp name)
(or (and (consp entry) (stringp (car entry)) (natp (cdr entry)))
(l2-fs-p entry))))))
(l2-fs-p (cdr fs)))))
;; This function transforms an instance of l2 into an equivalent instance of l1.
(defun l2-to-l1-fs (fs)
(declare (xargs :guard (l2-fs-p fs)))
(if (atom fs)
fs
(cons (let* ((directory-or-file-entry (car fs))
(name (car directory-or-file-entry))
(entry (cdr directory-or-file-entry)))
(cons name
(if (and (consp entry) (stringp (car entry)))
(car entry)
(l2-to-l1-fs entry))))
(l2-to-l1-fs (cdr fs)))))
;; This theorem shows the type-correctness of l2-to-l1-fs.
(defthm l2-to-l1-fs-correctness-1
(implies (l2-fs-p fs)
(l1-fs-p (l2-to-l1-fs fs))))
(defthm alistp-l2-fs-p
(implies (l2-fs-p fs)
(alistp fs)))
(defthm l2-fs-p-assoc
(implies (and (l2-fs-p fs)
(consp (assoc-equal name fs))
(consp (cddr (assoc-equal name fs))))
(l2-fs-p (cdr (assoc-equal name fs)))))
;; This function allows a file or directory to be found in a filesystem given a path.
(defun l2-stat (hns fs)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs))))
(if (atom hns)
fs
(if (atom fs)
nil
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
nil
(let ((contents (cdr sd)))
(if (stringp (car contents))
(and (null (cdr hns))
(car contents))
(l2-stat (cdr hns) contents))))))))
(defthm l2-stat-correctness-1-lemma-1
(implies (and (l2-fs-p fs))
(iff (consp (assoc-equal name (l2-to-l1-fs fs)))
(consp (assoc-equal name fs)))))
(defthm l2-stat-correctness-1-lemma-3
(implies (and (l2-fs-p fs)
(consp (assoc-equal name fs))
(not (and (consp (cdr (assoc-equal name fs)))
(stringp (car (cdr (assoc-equal name fs)))))))
(equal (cdr (assoc-equal name (l2-to-l1-fs fs)))
(l2-to-l1-fs (cdr (assoc-equal name fs))))))
(defthm l2-stat-correctness-1-lemma-4
(implies (and (l2-fs-p fs) (stringp (cadr (assoc-equal name fs))))
(equal (cdr (assoc-equal name (l2-to-l1-fs fs)))
(cadr (assoc-equal name fs)))))
(defthm l2-stat-correctness-1-lemma-5
(implies (and (consp (assoc-equal name fs))
(not (stringp (cadr (assoc-equal name fs))))
(l2-fs-p fs))
(l2-fs-p (cdr (assoc-equal name fs)))))
;; This is the first of two theorems showing the equivalence of the l2 and l1
;; versions of stat.
(defthm
l2-stat-correctness-1
(implies (and (l2-fs-p fs)
(stringp (l2-stat hns fs)))
(equal (l1-stat hns (l2-to-l1-fs fs))
(l2-stat hns fs)))
:hints
(("subgoal *1/5.2'"
:in-theory (disable l2-to-l1-fs-correctness-1)
:use (:instance l2-to-l1-fs-correctness-1
(fs (cdr (assoc-equal (car hns) fs)))))))
(defthm l2-stat-correctness-2-lemma-2
(implies (not (stringp fs))
(not (stringp (l2-to-l1-fs fs)))))
;; This is the second of two theorems showing the equivalence of the l2 and l1
;; versions of stat.
(defthm l2-stat-correctness-2
(implies (and (l2-fs-p fs)
(l2-fs-p (l2-stat hns fs)))
(equal (l1-stat hns (l2-to-l1-fs fs))
(l2-to-l1-fs (l2-stat hns fs)))))
;; This is simply a useful property of stat.
(defthm l2-stat-of-stat
(implies (and (symbol-listp inside)
(symbol-listp outside)
(l2-stat outside fs)
(l2-fs-p fs))
(equal (l2-stat inside (l2-stat outside fs))
(l2-stat (append outside inside) fs)))
:hints
(("Goal"
:induct (l2-stat outside fs))))
;; This function finds a text file given its path and reads a segment of
;; that text file.
(defun l2-rdchs (hns fs start n)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs)
(natp start)
(natp n))))
(let ((file (l2-stat hns fs)))
(if (not (stringp file))
nil
(let ((file-length (length file))
(end (+ start n)))
(if (< file-length end)
nil
(subseq file start (+ start n)))))))
(defthm l2-rdchs-correctness-1-lemma-1
(implies (and (l2-fs-p fs)
(symbol-listp hns)
(not (stringp (l2-stat hns fs))))
(not (stringp (l1-stat hns (l2-to-l1-fs fs))))))
(defthm l2-rdchs-correctness-1-lemma-2
(implies (l2-fs-p fs)
(not (stringp (l2-to-l1-fs fs)))))
;; This theorem proves the equivalence of the l2 and l1 versions of rdchs.
(defthm l2-rdchs-correctness-1
(implies (and (symbol-listp hns)
(l2-fs-p fs)
(natp start)
(natp n))
(equal (l1-rdchs hns (l2-to-l1-fs fs) start n)
(l2-rdchs hns fs start n))))
; This function deletes a file or directory given its path.
(defun l2-unlink (hns fs)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs))))
(if (atom hns)
fs ;;error case, basically
(if (atom (cdr hns))
(remove1-assoc (car hns) fs)
(if (atom fs)
nil
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
fs
(let ((contents (cdr sd)))
(if (stringp (car contents))
fs ;; we still have names but we're at a regular file - error
(cons (cons (car sd)
(l2-unlink (cdr hns) contents))
(remove1-assoc (car hns) fs))))))))
))
; This function writes a specified text string to a specified position to a
; text file at a specified path.
(defun l2-wrchs (hns fs start text)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs)
(natp start)
(stringp text))
:guard-hints
(("Subgoal 1.4" :use (:instance character-listp-coerce (str ()))) )))
(if (atom hns)
fs ;; error - showed up at fs with no name - so leave fs unchanged
(if (atom fs)
nil ;; error, so leave fs unchanged
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
fs ;; file-not-found error, so leave fs unchanged
(let ((contents (cdr sd)))
(cons (cons (car sd)
(if (and (consp (cdr sd)) (stringp (cadr sd)))
(let ((file (cdr sd)))
(if (consp (cdr hns))
file ;; error, so leave fs unchanged
(let* ((oldtext (coerce (car file) 'list))
(newtext
(insert-text oldtext start text))
(newlength (len newtext)))
(cons
(coerce newtext 'string)
newlength))))
(l2-wrchs (cdr hns) contents start text)))
(remove1-assoc (car hns) fs))))))))
(defthm l2-wrchs-returns-fs-lemma-2
(implies (l2-fs-p fs)
(l2-fs-p (remove1-assoc-equal s fs))))
(defthm l2-wrchs-returns-fs-lemma-3
(implies (and (consp fs) (l2-fs-p fs)
(consp (assoc-equal s fs))
(not (stringp (cadr (assoc-equal s fs)))))
(l2-fs-p (cdr (assoc-equal s fs)))))
(defthmd l2-wrchs-returns-fs-lemma-4
(implies (and (consp (assoc-equal name fs))
(l2-fs-p fs)
(consp (cdr (assoc-equal name fs)))
(stringp (cadr (assoc-equal name fs))))
(and (integerp (cddr (assoc-equal name fs)))
(<= 0 (cddr (assoc-equal name fs))))))
(defthm l2-wrchs-returns-fs-lemma-5
(implies (and (consp (assoc-equal name fs))
(l2-fs-p fs))
(symbolp name))
:rule-classes :forward-chaining)
;; This theorem shows that the property l2-fs-p is preserved by wrchs.
(defthm
l2-wrchs-returns-fs
(implies (l2-fs-p fs)
(l2-fs-p (l2-wrchs hns fs start text)))
:hints (("goal" :in-theory (enable l2-wrchs-returns-fs-lemma-4))))
;; This theorem shows that the property l2-fs-p is preserved by unlink.
(defthm l2-unlink-returns-fs
(implies (and (l2-fs-p fs))
(l2-fs-p (l2-unlink hns fs))))
(defthm l2-wrchs-correctness-1-lemma-1
(implies (l2-fs-p fs)
(equal (remove1-assoc-equal name (l2-to-l1-fs fs))
(l2-to-l1-fs (remove1-assoc-equal name fs)))))
(defthm l2-wrchs-correctness-1-lemma-2
(implies (and (consp fs)
(l2-fs-p fs))
(consp (l2-to-l1-fs fs))))
;; This theorem shows the equivalence of the l2 and l1 versions of wrchs.
(defthm
l2-wrchs-correctness-1
(implies (l2-fs-p fs)
(equal (l1-wrchs hns (l2-to-l1-fs fs)
start text)
(l2-to-l1-fs (l2-wrchs hns fs start text))))
:hints
(("subgoal *1/5.1''"
:in-theory (disable l2-wrchs-returns-fs)
:use (:instance l2-wrchs-returns-fs (hns (cdr hns))
(fs (cdr (assoc-equal (car hns) fs)))))))
;; This function creates a text file (and all necessary subdirectories) given a
;; path and some initial text.
(defun l2-create (hns fs text)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs)
(stringp text))))
(if (atom hns)
fs ;; error - showed up at fs with no name - so leave fs unchanged
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
(cons
(cons
(car hns)
(if (atom (cdr hns))
(cons text (length text))
(l2-create (cdr hns) nil text)))
fs)
(let ((contents (cdr sd)))
(cons (cons (car sd)
(if (and (consp (cdr sd)) (stringp (cadr sd)))
contents ;; file already exists, so leave fs unchanged
(l2-create (cdr hns) contents text)))
(remove1-assoc (car hns) fs))
)))))
;; This theorem shows that the property l2-fs-p is preserved by create.
(defthm
l2-create-returns-fs
(implies (and (symbol-listp hns)
(l2-fs-p fs)
(stringp text))
(l2-fs-p (l2-create hns fs text)))
:hints (("goal" :in-theory (enable l2-wrchs-returns-fs-lemma-4))))
(defthm l2-create-correctness-1-lemma-1
(implies (and (not (consp (cdr (assoc-equal name fs))))
(consp (assoc-equal name fs))
(l2-fs-p fs))
(not (cdr (assoc-equal name fs))))
:rule-classes (:forward-chaining))
(defthm l2-create-correctness-1-lemma-2
(implies (l2-fs-p fs)
(not (stringp (car fs)))))
;; This theorem shows the equivalence of the l2 and l1 versions of create.
(defthm l2-create-correctness-1
(implies (and (symbol-listp hns)
(l2-fs-p fs)
(stringp text))
(equal (l1-create hns (l2-to-l1-fs fs) text)
(l2-to-l1-fs (l2-create hns fs text)))))
(defthm l2-read-after-write-1-lemma-1
(implies (consp (assoc-equal name alist))
(equal (car (assoc-equal name alist)) name)))
(defthm l2-read-after-write-2-lemma-1
(implies (l2-fs-p fs)
(not (stringp (cdr (assoc-equal name fs))))))
(defthm l2-read-after-write-2-lemma-2
(implies (and (consp hns1)
(consp fs)
(consp (assoc-equal (car hns1) fs))
(l2-fs-p fs)
(symbolp (car hns1))
(not (cdr hns1))
(stringp (l2-stat hns1 fs)))
(equal (l2-stat hns1 fs) (cadr (assoc (car hns1) fs)))))
(defthm l2-read-after-write-2-lemma-3
(implies (and (not (stringp (l2-stat hns fs)))
(l2-fs-p fs))
(l2-fs-p (l2-stat hns fs))))
(defthm
l2-read-after-write-2-lemma-4
(implies
(l2-fs-p fs)
(equal
(stringp (l2-stat hns1 (l2-wrchs hns2 fs start2 text2)))
(stringp (l2-stat hns1 fs))))
:hints
(("goal"
:in-theory (disable l1-read-after-write-2-lemma-3
l2-stat-correctness-1)
:use ((:instance l1-read-after-write-2-lemma-3
(fs (l2-to-l1-fs fs)))
(:instance l2-stat-correctness-1 (hns hns1)
(fs (l2-wrchs hns2 fs start2 text2)))
(:instance l2-stat-correctness-1 (hns hns1))))))
(defthm
l2-stat-after-write
(implies
(and (l2-fs-p fs)
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(natp start2)
(stringp (l2-stat hns1 fs)))
(equal
(l2-stat hns1 (l2-wrchs hns2 fs start2 text2))
(if (equal hns1 hns2)
(coerce (insert-text (coerce (l2-stat hns1 fs) 'list)
start2 text2)
'string)
(l2-stat hns1 fs))))
:hints
(("goal"
:in-theory (disable l2-stat-correctness-1
l1-stat-after-write)
:use ((:instance l2-stat-correctness-1 (hns hns1))
(:instance l2-stat-correctness-1 (hns hns1)
(fs (l2-wrchs hns2 fs start2 text2)))
(:instance l1-stat-after-write
(fs (l2-to-l1-fs fs)))))))
(defthm l2-read-after-write-1
(implies (and (l2-fs-p fs)
(stringp text)
(symbol-listp hns)
(natp start)
(equal n (length text))
(stringp (l2-stat hns fs)))
(equal (l2-rdchs hns (l2-wrchs hns fs start text) start n) text)))
(defthm
l2-read-after-write-2
(implies (and (l2-fs-p fs)
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(not (equal hns1 hns2))
(natp start1)
(natp start2)
(natp n1))
(equal (l2-rdchs hns1 (l2-wrchs hns2 fs start2 text2)
start1 n1)
(l2-rdchs hns1 fs start1 n1))))
;; This proves the equivalent of the first read-after-write property for
;; create.
(defthm l2-read-after-create-1
(implies (and (l2-fs-p fs)
(stringp text)
(symbol-listp hns)
(equal n (length text))
(not (l2-stat hns fs))
(stringp (l2-stat hns (l2-create hns fs text))))
(equal (l2-rdchs hns (l2-create hns fs text) 0 n) text)))
;; This proves the equivalent of the second read-after-write property for
;; create.
(defthm l2-read-after-create-2
(implies (and (l2-fs-p fs)
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(not (equal hns1 hns2))
(natp start1)
(natp n1)
(not (l2-stat hns2 fs))
(stringp (l2-stat hns2 (l2-create hns2 fs text2)))
(stringp (l2-stat hns1 fs)))
(equal (l2-rdchs hns1 (l2-create hns2 fs text2)
start1 n1)
(l2-rdchs hns1 fs start1 n1)))
:hints (("Goal" :use ((:instance
l2-create-correctness-1 (hns hns2)
(text text2))
(:instance
l2-rdchs-correctness-1 (hns hns1)
(start start1)
(n n1))
(:instance
l2-rdchs-correctness-1 (hns hns1)
(start start1)
(n n1))
(:instance
l2-rdchs-correctness-1 (hns hns1)
(fs (l2-create hns2 fs text2))
(start start1)
(n n1))
(:instance
l2-create-returns-fs (hns hns2)
(text text2))
(:instance l1-read-after-create-2
(fs (l2-to-l1-fs fs)))))))
;; This function checks that the file lengths associated with text files are
;; accurate.
(defun l2-fsck (fs)
(declare (xargs :guard (l2-fs-p fs)))
(or (atom fs)
(and (let ((directory-or-file-entry (car fs)))
(let ((entry (cdr directory-or-file-entry)))
(if (and (consp entry) (stringp (car entry)))
(equal (length (car entry)) (cdr entry))
(l2-fsck entry))))
(l2-fsck (cdr fs)))))
(defthm l2-fsck-after-l2-wrchs-lemma-1
(implies (and (l2-fs-p fs) (l2-fsck fs))
(l2-fsck (remove1-assoc-equal name fs))))
(defthm l2-fsck-after-l2-wrchs-lemma-2
(implies (and (l2-fs-p fs) (l2-fsck fs))
(l2-fsck (cdr (assoc-equal (car hns) fs)))))
(defthm l2-fsck-after-l2-wrchs-lemma-4
(implies (and (consp fs)
(consp (assoc-equal name fs))
(l2-fs-p fs)
(stringp text)
(l2-fsck fs)
(consp (cdr (assoc-equal name fs)))
(stringp (cadr (assoc-equal name fs))))
(equal (len (coerce (cadr (assoc-equal name fs))
'list))
(cddr (assoc-equal name fs))))
)
(encapsulate ()
(local (include-book "std/strings/coerce" :dir :system))
(defthm l2-fsck-after-l2-wrchs-lemma-5
(implies (character-listp cl)
(equal (coerce (coerce cl 'string) 'list)
cl)))
)
;; This theorem shows that l2-fsck is preserved by l2-wrchs
(defthm l2-fsck-after-l2-wrchs
(implies (and (l2-fs-p fs) (natp start) (stringp text) (l2-fsck fs))
(l2-fsck (l2-wrchs hns fs start text))))
;; This theorem shows that l2-fsck is preserved by l2-unlink
(defthm l2-fsck-after-l2-unlink
(implies (and (l2-fs-p fs) (l2-fsck fs))
(l2-fsck (l2-unlink hns fs))))
; This function finds the length of the text file at a specified path
(defun l2-wc-len (hns fs)
(declare (xargs :guard (and (symbol-listp hns)
(l2-fs-p fs))))
(let ((file (l2-stat hns fs)))
(if (not (stringp file))
nil
(length file))))
; Prove (list-of-chars-to-string (string-to-chars str))
; (string-to-chars (list-of-chars-to-string char-list))
; and then, you will be positioned to use either form.
#||From :doc STR::STD/STRINGS/COERCE
Theorem: <coerce-inverse-1-better>
(defthm coerce-inverse-1-better
(equal (coerce (coerce x 'string) 'list)
(if (stringp x)
nil (make-character-list x))))
Theorem: <coerce-inverse-2-better>
(defthm coerce-inverse-2-better
(equal (coerce (coerce x 'list) 'string)
(if (stringp x) x "")))
That takes care of that
||#
; Correspond (or not) with Linux system calls -- the low-level stuff...
; Add file -- or, if you will, create a file with some initial contents
; and so on...
|