1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
|
(in-package "ACL2")
; file-system-3.lisp Mihir Mehta
; Here we define a more complex file system with length tracking and a disk.
; We first start with a file-system recognizer, and then we define various
; file-system operations.
(include-book "std/testing/assert-bang" :dir :system)
(include-book "../utilities/bounded-nat-listp")
(include-book "../utilities/block-listp")
(include-book "../utilities/generate-index-list")
(include-book "file-system-2")
;; This function serves to get the specified blocks from a disk. If the block
;; is not found (most likely because of an invalid index) we return a null block
;; as noted above.
(defun
fetch-blocks-by-indices
(block-list index-list)
(declare (xargs :guard (and (block-listp block-list)
(nat-listp index-list))))
(if
(atom index-list)
nil
(let
((tail
(fetch-blocks-by-indices block-list (cdr index-list))))
(if (>= (car index-list) (len block-list))
(cons *nullblock* tail)
(cons (nth (car index-list) block-list)
tail)))))
;; Prove that a proper block-list is returned.
(defthm fetch-blocks-by-indices-correctness-1
(implies (and (block-listp block-list) (nat-listp index-list))
(block-listp (fetch-blocks-by-indices block-list index-list))))
;; Prove that a list of the appropriate length is returned.
(defthm fetch-blocks-by-indices-correctness-2
(implies (and (block-listp block-list) (nat-listp index-list))
(equal (len (fetch-blocks-by-indices block-list index-list))
(len index-list))))
(defthm
fetch-blocks-by-indices-correctness-3
(implies
(and (block-listp block-list)
(bounded-nat-listp index-list (len block-list)))
(equal (fetch-blocks-by-indices (binary-append block-list extra-blocks)
index-list)
(fetch-blocks-by-indices block-list index-list))))
;; This function, which is kept disabled, recognises a regular file entry. I am
;; deciding not to make things overly complicated by making getter and setter
;; functions for file entries.
(defund l3-regular-file-entry-p (entry)
(declare (xargs :guard t))
(and (consp entry)
(nat-listp (car entry))
(natp (cdr entry))
(feasible-file-length-p (len (car entry)) (cdr entry))))
(defthm l3-regular-file-entry-p-correctness-1
(implies (l3-regular-file-entry-p entry)
(and (true-listp (car entry))
(nat-listp (car entry))
(natp (cdr entry))
(feasible-file-length-p (len (car entry)) (cdr entry))))
:hints (("Goal" :in-theory (enable l3-regular-file-entry-p)) ))
(defthm l3-regular-file-entry-p-correctness-2
(implies (l3-regular-file-entry-p entry)
(consp entry))
:hints (("Goal" :use l3-regular-file-entry-p-correctness-1) )
:rule-classes (:forward-chaining))
; This function defines a valid filesystem. It's an alist where all the cars
; are symbols and all the cdrs are either further filesystems or regular files,
; separated into text (represented by a nat-list of indices which we use to
; look up an external disk) and metadata (currently, only length).
(defun l3-fs-p (fs)
(declare (xargs :guard t))
(if (atom fs)
(null fs)
(and (let ((directory-or-file-entry (car fs)))
(if (atom directory-or-file-entry)
nil
(let ((name (car directory-or-file-entry))
(entry (cdr directory-or-file-entry)))
(and (symbolp name)
(or (l3-regular-file-entry-p entry)
(l3-fs-p entry))))))
(l3-fs-p (cdr fs)))))
(defthm l3-regular-file-entry-p-correctness-3
(implies (l3-regular-file-entry-p entry)
(not (l3-fs-p entry)))
:hints (("Goal" :in-theory (enable l3-regular-file-entry-p)) )
:rule-classes (:rewrite (:rewrite :corollary
(implies (l3-fs-p entry)
(not (l3-regular-file-entry-p entry))))))
(defthm alistp-l3-fs-p
(implies (l3-fs-p fs)
(alistp fs)))
(defthm l3-fs-p-assoc
(implies (and (l3-fs-p fs)
(consp (assoc-equal name fs))
(not (l3-regular-file-entry-p (cdr (assoc-equal name fs)))))
(l3-fs-p (cdr (assoc-equal name fs)))))
(assert!
(l3-fs-p '((a (1 2) . 10) (b (3 4) . 11) (c (a (5 6) . 12) (b (7 8) . 13)))))
; This function is a further restricted filesystem. This is not used as our
; only filesystem definition because it has a dependence on the disk, which we
; want to keep separate, at least at this stage.
(defund l3-bounded-fs-p (fs disk-length)
(declare (xargs :guard (natp disk-length)))
(if (atom fs)
(null fs)
(and (let ((directory-or-file-entry (car fs)))
(if (atom directory-or-file-entry)
nil
(let ((name (car directory-or-file-entry))
(entry (cdr directory-or-file-entry)))
(and (symbolp name)
(or (and (consp entry)
(bounded-nat-listp (car entry) disk-length)
(natp (cdr entry))
(feasible-file-length-p (len (car entry)) (cdr entry)))
(l3-bounded-fs-p entry disk-length))))))
(l3-bounded-fs-p (cdr fs) disk-length))))
(defthm l3-bounded-fs-p-correctness-1
(implies (l3-bounded-fs-p fs disk-length)
(l3-fs-p fs))
:hints (("Goal" :in-theory (enable l3-bounded-fs-p l3-regular-file-entry-p)) )
:rule-classes (:forward-chaining))
(defthm l3-bounded-fs-p-correctness-2
(implies (l3-regular-file-entry-p entry)
(not (l3-bounded-fs-p entry disk-length)))
:hints (("Goal" :in-theory (disable l3-regular-file-entry-p-correctness-3)
:use l3-regular-file-entry-p-correctness-3)))
(defthm l3-bounded-fs-p-assoc
(implies (and (l3-bounded-fs-p fs disk-length)
(consp (assoc-equal name fs))
(not (l3-regular-file-entry-p (cdr (assoc-equal name fs)))))
(l3-bounded-fs-p (cdr (assoc-equal name fs)) disk-length))
:hints (("Goal" :in-theory (enable l3-bounded-fs-p l3-regular-file-entry-p)) ))
(defthm l3-to-l2-fs-guard-lemma-1
(implies (and (feasible-file-length-p (len blocks) n)
(block-listp blocks))
(character-listp (unmake-blocks blocks n)))
:hints (("Goal" :in-theory (enable feasible-file-length-p)) ))
;; This function transforms an instance of l3 into an equivalent instance of l2.
(defun l3-to-l2-fs (fs disk)
(declare (xargs :guard (and (l3-fs-p fs) (block-listp disk))
:guard-hints (("Subgoal 2.6" :in-theory (enable feasible-file-length-p)))
))
(if (atom fs)
nil
(cons (let* ((directory-or-file-entry (car fs))
(name (car directory-or-file-entry))
(entry (cdr directory-or-file-entry)))
(cons name
(if (l3-regular-file-entry-p entry)
(cons (coerce (unmake-blocks
(fetch-blocks-by-indices disk (car entry))
(cdr entry)) 'string)
(cdr entry))
(l3-to-l2-fs entry disk))))
(l3-to-l2-fs (cdr fs) disk))))
;; This theorem shows the type-correctness of l3-to-l2-fs.
(defthm l3-to-l2-fs-correctness-1
(implies (and (l3-fs-p fs) (block-listp disk))
(l2-fs-p (l3-to-l2-fs fs disk))))
;; This function allows a file or directory to be found in a filesystem given a path.
(defun l3-stat (hns fs disk)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk))))
(if (atom hns)
fs
(if (atom fs)
nil
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
nil
(let ((contents (cdr sd)))
(if (l3-regular-file-entry-p contents)
(and (null (cdr hns))
(coerce
(unmake-blocks (fetch-blocks-by-indices disk (car contents))
(cdr contents))
'string))
(l3-stat (cdr hns) contents disk))))))))
(defthm l3-stat-correctness-1-lemma-2
(implies (and (l3-fs-p fs) (block-listp disk))
(equal (consp (assoc-equal name (l3-to-l2-fs fs disk)))
(consp (assoc-equal name fs)))))
(defthm
l3-stat-correctness-1-lemma-3
(implies
(and (l3-fs-p fs)
(block-listp disk)
(consp (assoc-equal name fs))
(l3-regular-file-entry-p (cdr (assoc-equal name fs))))
(equal
(cadr (assoc-equal name (l3-to-l2-fs fs disk)))
(coerce (unmake-blocks
(fetch-blocks-by-indices disk (cadr (assoc-equal name fs)))
(cddr (assoc-equal name fs)))
'string))))
(defthm l3-stat-correctness-1-lemma-4
(implies (and (l3-fs-p fs)
(block-listp disk)
(l3-fs-p (cdr (assoc-equal name fs))))
(equal (cdr (assoc-equal name (l3-to-l2-fs fs disk)))
(l3-to-l2-fs (cdr (assoc-equal name fs))
disk))))
(defthm
l3-stat-correctness-1-lemma-5
(implies (and (consp (assoc-equal name fs))
(l3-fs-p fs)
(block-listp disk)
(not (l3-regular-file-entry-p (cdr (assoc-equal name fs)))))
(not (stringp (car (l3-to-l2-fs (cdr (assoc-equal name fs))
disk))))))
;; This is the first of two theorems showing the equivalence of the l3 and l2
;; versions of stat.
(defthm l3-stat-correctness-1
(implies (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk)
(stringp (l3-stat hns fs disk)))
(equal (l2-stat hns (l3-to-l2-fs fs disk))
(l3-stat hns fs disk))))
(defthm l3-stat-correctness-2-lemma-1
(implies (l3-fs-p fs)
(equal (consp (l3-to-l2-fs fs disk))
(consp fs))))
;; This is the second of two theorems showing the equivalence of the l3 and l2
;; versions of stat.
(defthm l3-stat-correctness-2
(implies (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk)
(l3-fs-p (l3-stat hns fs disk)))
(equal (l2-stat hns (l3-to-l2-fs fs disk))
(l3-to-l2-fs (l3-stat hns fs disk) disk))))
;; This is simply a useful property of stat.
(defthm l3-stat-of-stat
(implies (and (symbol-listp inside)
(symbol-listp outside)
(l3-stat outside fs disk)
(l3-fs-p fs)
(block-listp disk))
(equal (l3-stat inside (l3-stat outside fs disk) disk)
(l3-stat (append outside inside) fs disk)))
:hints
(("Goal" :induct (l3-stat outside fs disk))))
;; This function finds a text file given its path and reads a segment of
;; that text file.
(defun l3-rdchs (hns fs disk start n)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs)
(natp start)
(natp n)
(block-listp disk))))
(let ((file (l3-stat hns fs disk)))
(if (not (stringp file))
nil
(let ((file-length (length file))
(end (+ start n)))
(if (< file-length end)
nil
(subseq file start (+ start n)))))))
(defthm l3-rdchs-correctness-1-lemma-1
(implies (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk))
(equal (stringp (l2-stat hns (l3-to-l2-fs fs disk)))
(stringp (l3-stat hns fs disk)))))
;; This theorem proves the equivalence of the l3 and l2 versions of rdchs.
(defthm l3-rdchs-correctness-1
(implies (and (symbol-listp hns)
(l3-fs-p fs)
(natp start)
(natp n)
(block-listp disk))
(equal (l2-rdchs hns (l3-to-l2-fs fs disk) start n)
(l3-rdchs hns fs disk start n))))
; This function deletes a file or directory given its path.
; Note that we don't need to do anything with the disk - the blocks can just
; lie there, forever unreferred to. In model 4, we start re-using the blocks.
(defun l3-unlink (hns fs)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs))))
(if (atom hns)
fs ;;error case, basically
(if (atom (cdr hns))
(remove1-assoc (car hns) fs)
(if (atom fs)
nil
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
fs
(let ((contents (cdr sd)))
(if (l3-regular-file-entry-p contents)
fs ;; we still have names but we're at a regular file - error
(cons (cons (car sd)
(l3-unlink (cdr hns) contents))
(remove1-assoc (car hns) fs))))))))
))
(defthmd l3-unlink-returns-fs-lemma-1
(implies (and (consp (assoc-equal s fs))
(l3-fs-p fs))
(and (equal (car (assoc-equal s fs)) s) (symbolp s))))
;; This theorem shows that the property l3-fs-p is preserved by unlink.
(defthm l3-unlink-returns-fs
(implies (and (l3-fs-p fs))
(l3-fs-p (l3-unlink hns fs)))
:hints (("Goal" :in-theory (enable l3-unlink-returns-fs-lemma-1)) ))
(defthm l3-unlink-correctness-1-lemma-1
(implies (and (l3-fs-p fs) (block-listp disk))
(equal (remove1-assoc-equal name (l3-to-l2-fs fs disk))
(l3-to-l2-fs (remove1-assoc-equal name fs)
disk))))
(defthm
l3-unlink-correctness-1-lemma-2
(implies
(and (consp (cdr hns))
(consp fs)
(l3-fs-p fs)
(block-listp disk))
(implies
(not (l3-regular-file-entry-p (cdr (assoc-equal name fs))))
(not (l3-regular-file-entry-p (l3-unlink (cdr hns)
(cdr (assoc-equal name fs))))))))
;; This theorem shows the equivalence of the l3 and l2 versions of unlink.
(defthm l3-unlink-correctness-1
(implies (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk))
(equal (l2-unlink hns (l3-to-l2-fs fs disk))
(l3-to-l2-fs (l3-unlink hns fs) disk))))
;; putting these lemmas on the back burner because we would need to add uniquep
;; to our l3-fs-p definition to make this work
;; (defthm l3-unlink-works-lemma-1 (not (assoc-equal key (remove1-assoc-equal key alist))))
;; (defthm l3-unlink-works (implies (l3-fs-p fs) (not (l3-stat hns (l3-unlink hns fs)))))
(encapsulate
()
(local (defun induction-scheme (x y)
(if (atom y)
x
(induction-scheme (binary-append x (cons (car y) nil)) (cdr y)))))
(defthm
generate-index-list-correctness-3
(implies
(and (block-listp disk)
(block-listp newblocks))
(equal (fetch-blocks-by-indices (binary-append disk newblocks)
(generate-index-list (len disk)
(len newblocks)))
newblocks))
:hints (("Goal" :induct (induction-scheme disk newblocks)))))
; This function writes a specified text string to a specified position to a
; text file at a specified path.
(defun l3-wrchs (hns fs disk start text)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs)
(natp start)
(stringp text)
(block-listp disk))))
(if (atom hns)
(mv fs disk) ;; error - showed up at fs with no name - so leave fs unchanged
(if (atom fs)
(mv nil disk) ;; error, so leave fs unchanged
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
(mv fs disk) ;; file-not-found error, so leave fs unchanged
(let ((contents (cdr sd)))
(if (l3-regular-file-entry-p contents)
(if (cdr hns)
(mv (cons (cons (car sd) contents)
(remove1-assoc (car hns) fs))
disk) ;; error, so leave fs unchanged
(let* ((oldtext
(unmake-blocks
(fetch-blocks-by-indices disk (car contents))
(cdr contents)))
(newtext (insert-text oldtext start text))
(newblocks (make-blocks newtext)))
(mv (cons (cons (car sd)
(cons (generate-index-list
(len disk)
(len newblocks))
(len newtext)))
(remove1-assoc (car hns) fs))
(binary-append disk newblocks))))
(mv-let (new-contents new-disk) (l3-wrchs (cdr hns) contents disk start text)
(mv (cons (cons (car sd) new-contents)
(remove1-assoc (car hns) fs))
new-disk)))
))))))
(defthm l3-wrchs-returns-fs-lemma-1
(implies (l3-fs-p fs)
(l3-fs-p (remove1-assoc-equal s fs))))
(defthm
l3-wrchs-returns-fs-lemma-3
(implies
(and (block-listp disk)
(character-listp cl))
(l3-regular-file-entry-p (cons (generate-index-list (len disk)
(len (make-blocks cl)))
(len cl))))
:hints (("Goal" :in-theory (enable l3-regular-file-entry-p))))
;; This theorem shows that the property l3-fs-p is preserved by wrchs, and
;; additionally the property block-listp is preseved for the disk.
(defthm l3-wrchs-returns-fs
(implies (and (l3-fs-p fs)
(block-listp disk)
(integerp start)
(<= 0 start)
(stringp text))
(mv-let (new-fs new-disk)
(l3-wrchs hns fs disk start text)
(and (l3-fs-p new-fs) (block-listp new-disk))))
:hints (("Goal" :in-theory (enable l3-unlink-returns-fs-lemma-1)) ))
(defthm l3-wrchs-correctness-1-lemma-3
(implies (and (l3-bounded-fs-p fs (len disk))
(block-listp disk)
(l3-regular-file-entry-p (cdr (car fs))))
(bounded-nat-listp (cadr (car fs))
(len disk)))
:hints (("Goal" :in-theory (enable l3-bounded-fs-p))))
(defthm l3-wrchs-correctness-1-lemma-4
(implies (and (l3-bounded-fs-p fs (len disk))
(block-listp disk))
(equal (l3-to-l2-fs fs (binary-append disk extra-blocks))
(l3-to-l2-fs fs disk)))
:hints (("Goal" :in-theory (enable l3-bounded-fs-p l3-regular-file-entry-p))))
(defthm l3-wrchs-correctness-1-lemma-6
(implies (l3-bounded-fs-p fs disk-length)
(l3-bounded-fs-p (remove1-assoc-equal name fs)
disk-length))
:hints (("Goal" :in-theory (enable l3-bounded-fs-p))))
(defthm
l3-wrchs-correctness-1-lemma-8
(implies
(and (consp (assoc-equal name fs))
(l3-regular-file-entry-p (cdr (assoc-equal name fs)))
(l3-fs-p fs)
(block-listp disk))
(equal
(cdr (assoc-equal name (l3-to-l2-fs fs disk)))
(cons
(coerce (unmake-blocks
(fetch-blocks-by-indices disk (cadr (assoc-equal name fs)))
(cddr (assoc-equal name fs)))
'string)
(cddr (assoc-equal name fs))))))
(defthm
l3-wrchs-correctness-1-lemma-9
(implies
(and (l3-bounded-fs-p fs1 (len disk))
(block-listp disk))
(equal (l3-to-l2-fs fs1
(mv-nth 1 (l3-wrchs hns fs2 disk start text)))
(l3-to-l2-fs fs1 disk))))
;; This theorem shows the equivalence of the l3 and l2 versions of wrchs.
(defthm
l3-wrchs-correctness-1
(implies (and (l3-bounded-fs-p fs (len disk))
(stringp text)
(natp start)
(symbol-listp hns)
(block-listp disk))
(equal (l2-wrchs hns (l3-to-l2-fs fs disk)
start text)
(mv-let (new-fs new-disk)
(l3-wrchs hns fs disk start text)
(l3-to-l2-fs new-fs new-disk))))
:hints (("subgoal *1/8'''"
:in-theory (disable l3-wrchs-returns-fs)
:use (:instance l3-wrchs-returns-fs (hns (cdr hns))
(fs (cdr (assoc-equal (car hns) fs)))))))
;; This function creates a text file (and all necessary subdirectories) given a
;; path and some initial text.
(defun l3-create (hns fs disk text)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs)
(stringp text)
(block-listp disk))))
(if (atom hns)
(mv fs disk) ;; error - showed up at fs with no name - so leave fs unchanged
(let ((sd (assoc (car hns) fs)))
(if (atom sd)
(if (atom (cdr hns))
(let ((blocks (make-blocks (coerce text 'list))))
(mv (cons (cons (car hns)
(cons (generate-index-list
(len disk)
(len blocks))
(length text)))
fs)
(binary-append disk blocks)))
(mv-let (new-fs new-disk) (l3-create (cdr hns) nil disk text)
(mv (cons (cons (car hns) new-fs) fs) new-disk)))
(let ((contents (cdr sd)))
(if (l3-regular-file-entry-p contents)
(mv (cons (cons (car sd) contents) ;; file already exists, so leave fs unchanged
(remove1-assoc (car hns) fs))
disk)
(mv-let (new-fs new-disk) (l3-create (cdr hns) contents disk text)
(mv (cons (cons (car sd)
new-fs)
(remove1-assoc (car hns) fs))
new-disk)))
)))))
;; This theorem shows that the property l3-fs-p is preserved by create, and
;; additionally the property block-listp is preseved for the disk.
(defthm l3-create-returns-fs
(implies (and (l3-fs-p fs)
(block-listp disk)
(stringp text)
(symbol-listp hns))
(mv-let (new-fs new-disk)
(l3-create hns fs disk text)
(and (l3-fs-p new-fs) (block-listp new-disk)))))
(defthm l3-create-correctness-1-lemma-2
(implies (and (l3-bounded-fs-p fs1 (len disk))
(l3-fs-p fs2)
(block-listp disk)
(stringp text)
(symbol-listp hns))
(equal (l3-to-l2-fs fs1
(mv-nth 1
(l3-create hns fs2 disk text)))
(l3-to-l2-fs fs1
disk))))
;; This theorem shows the equivalence of the l3 and l2 versions of create.
(defthm l3-create-correctness-1
(implies (and (l3-bounded-fs-p fs (len disk))
(stringp text)
(symbol-listp hns)
(block-listp disk))
(equal (l2-create hns (l3-to-l2-fs fs disk) text)
(mv-let (new-fs new-disk) (l3-create hns fs disk text)
(l3-to-l2-fs new-fs new-disk))))
:hints (("Subgoal *1/9'''"
:use (:instance l3-create-returns-fs (hns (cdr hns))
(fs (cdr (assoc-equal (car hns) fs)))))
("Subgoal *1/5.2'"
:use (:instance l3-create-returns-fs (hns (cdr hns))
(fs nil)))
("Subgoal *1/3.2'"
:use (:instance l3-create-returns-fs (hns (cdr hns))
(fs nil)))
("Subgoal *1/3.1'" :in-theory (enable l3-bounded-fs-p))))
(defthm l3-read-after-write-1-lemma-2
(implies (and (l3-fs-p fs)
(block-listp disk)
(not (stringp (l3-stat hns fs disk))))
(l3-fs-p (l3-stat hns fs disk))))
(defthm
l3-read-after-write-1-lemma-3
(implies
(and (l3-bounded-fs-p fs (len disk))
(block-listp disk)
(symbol-listp hns1)
(symbol-listp hns2)
(stringp text2)
(natp start2))
(mv-let (new-fs new-disk)
(l3-wrchs hns2 fs disk start2 text2)
(equal (stringp (l3-stat hns1 new-fs new-disk))
(stringp (l3-stat hns1 fs disk)))))
:hints
(("goal"
:in-theory (disable l2-read-after-write-2-lemma-4
l3-stat-correctness-1
l3-stat-correctness-2
l3-wrchs-returns-fs)
:use
((:instance l2-read-after-write-2-lemma-4
(fs (l3-to-l2-fs fs disk)))
(:instance
l3-stat-correctness-1 (hns hns1)
(fs (mv-nth 0 (l3-wrchs hns2 fs disk start2 text2)))
(disk (mv-nth 1
(l3-wrchs hns2 fs disk start2 text2))))
(:instance
l3-stat-correctness-2 (hns hns1)
(fs (mv-nth 0 (l3-wrchs hns2 fs disk start2 text2)))
(disk (mv-nth 1
(l3-wrchs hns2 fs disk start2 text2))))
(:instance l3-wrchs-returns-fs (hns hns2)
(start start2)
(text text2))))))
(defthm
l3-stat-after-write
(implies
(and (l3-bounded-fs-p fs (len disk))
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(natp start2)
(stringp (l3-stat hns1 fs disk))
(block-listp disk))
(mv-let
(new-fs new-disk)
(l3-wrchs hns2 fs disk start2 text2)
(equal
(l3-stat hns1 new-fs new-disk)
(if
(equal hns1 hns2)
(coerce (insert-text (coerce (l3-stat hns1 fs disk) 'list)
start2 text2)
'string)
(l3-stat hns1 fs disk)))))
:hints
(("goal"
:in-theory (disable l3-stat-correctness-1
l2-stat-after-write l3-wrchs-returns-fs)
:use
((:instance l3-stat-correctness-1 (hns hns1))
(:instance
l3-stat-correctness-1 (hns hns1)
(fs (mv-nth 0 (l3-wrchs hns2 fs disk start2 text2)))
(disk (mv-nth 1
(l3-wrchs hns2 fs disk start2 text2))))
(:instance l2-stat-after-write
(fs (l3-to-l2-fs fs disk)))
(:instance l3-wrchs-returns-fs (hns hns2)
(start start2)
(text text2))))))
;; This is a proof of the first read-after-write property.
(defthm
l3-read-after-write-1
(implies (and (l3-bounded-fs-p fs (len disk))
(stringp text)
(symbol-listp hns)
(natp start)
(equal n (length text))
(stringp (l3-stat hns fs disk))
(block-listp disk))
(mv-let (new-fs new-disk)
(l3-wrchs hns fs disk start text)
(equal (l3-rdchs hns new-fs new-disk start n)
text)))
:hints
(("goal"
:in-theory (disable l3-read-after-write-1-lemma-3
l3-stat-after-write)
:use ((:instance l3-read-after-write-1-lemma-3 (hns1 hns)
(hns2 hns)
(start2 start)
(text2 text))
(:instance l3-stat-after-write (hns1 hns)
(hns2 hns)
(start2 start)
(text2 text))))))
;; This is a proof of the second read-after-write property.
(defthm
l3-read-after-write-2
(implies
(and (block-listp disk)
(l3-bounded-fs-p fs (len disk))
(stringp text1)
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(not (equal hns1 hns2))
(natp start1)
(natp start2)
(natp n1)
(natp n2))
(mv-let (new-fs new-disk)
(l3-wrchs hns2 fs disk start2 text2)
(equal (l3-rdchs hns1 new-fs new-disk start1 n1)
(l3-rdchs hns1 fs disk start1 n1))))
:hints
(("goal"
:in-theory (disable l3-read-after-write-1-lemma-3
l3-stat-after-write)
:use (l3-read-after-write-1-lemma-3 l3-stat-after-write))))
;; This proves the equivalent of the first read-after-write property for
;; create.
(defthm l3-read-after-create-1
(implies (and (l3-bounded-fs-p fs (len disk))
(stringp text)
(symbol-listp hns)
(equal n (length text))
(not (l3-stat hns fs disk))
(block-listp disk))
(mv-let (new-fs new-disk)
(l3-create hns fs disk text)
(implies
(stringp (l3-stat hns new-fs new-disk))
(equal (l3-rdchs hns new-fs new-disk 0 n) text))))
:hints (("Goal" :in-theory (disable
(:rewrite l2-read-after-create-1)
(:rewrite l3-to-l2-fs-correctness-1)
(:rewrite l3-create-correctness-1)
(:rewrite l3-stat-correctness-1)
(:rewrite l3-create-returns-fs))
:use ((:instance l2-read-after-create-1
(fs (l3-to-l2-fs fs disk)))
l3-to-l2-fs-correctness-1
(:instance l3-bounded-fs-p-correctness-1
(disk-length (len disk)))
l3-create-correctness-1
(:instance l3-stat-correctness-1
(fs (mv-nth 0 (l3-create hns fs disk text)))
(disk (mv-nth 1 (l3-create hns fs disk text))))
l3-create-returns-fs))))
;; This proves the equivalent of the second read-after-write property for
;; create.
(defthm l3-read-after-create-2
(implies (and (l3-bounded-fs-p fs (len disk))
(stringp text2)
(symbol-listp hns1)
(symbol-listp hns2)
(not (equal hns1 hns2))
(natp start1)
(natp n1)
(not (l3-stat hns2 fs disk))
(stringp (l3-stat hns1 fs disk))
(block-listp disk))
(mv-let (new-fs new-disk) (l3-create hns2 fs disk text2)
(implies
(stringp (l3-stat hns2 new-fs new-disk))
(equal (l3-rdchs hns1 new-fs new-disk start1 n1)
(l3-rdchs hns1 fs disk start1 n1)))))
:hints (("Goal"
:in-theory (disable
(:rewrite l2-read-after-create-2)
(:rewrite l3-to-l2-fs-correctness-1)
(:rewrite l3-stat-correctness-2)
(:rewrite l3-create-returns-fs)
(:rewrite l3-stat-correctness-1)
(:rewrite l3-create-correctness-1)
(:rewrite l3-rdchs-correctness-1)
l3-bounded-fs-p-correctness-1)
:use ((:instance l2-read-after-create-2
(fs (l3-to-l2-fs fs disk)))
l3-to-l2-fs-correctness-1
(:instance l3-stat-correctness-2 (hns hns2))
(:instance l3-stat-correctness-1 (hns hns1))
(:instance l3-stat-correctness-1 (hns hns2)
(fs (mv-nth 0 (l3-create hns2 fs disk text2)))
(disk (mv-nth 1 (l3-create hns2 fs disk text2))))
(:instance l3-create-returns-fs (hns hns2)
(text text2))
(:instance l3-stat-correctness-1 (hns hns2)
(fs (mv-nth 0 (l3-create hns2 fs disk text2)))
(disk (mv-nth 1 (l3-create hns2 fs disk text2))))
(:instance l3-create-correctness-1 (hns hns2)
(text text2))
(:instance l3-bounded-fs-p-correctness-1
(disk-length (len disk)))
(:instance l3-rdchs-correctness-1 (hns hns1)
(start start1)
(n n1))
(:instance l3-rdchs-correctness-1 (hns hns1)
(start start1)
(n n1)
(fs (mv-nth 0 (l3-create hns2 fs disk text2)))
(disk (mv-nth 1 (l3-create hns2 fs disk text2))))))))
; Find length of file
(defun wc-len (hns fs disk)
(declare (xargs :guard (and (symbol-listp hns)
(l3-fs-p fs)
(block-listp disk))))
(let ((file (l3-stat hns fs disk)))
(if (not (stringp file))
nil
(length file))))
; Prove (list-of-chars-to-string (string-to-chars str))
; (string-to-chars (list-of-chars-to-string char-list))
; and then, you will be positioned to use either form.
#||From :doc STR::STD/STRINGS/COERCE
Theorem: <coerce-inverse-1-better>
(defthm coerce-inverse-1-better
(equal (coerce (coerce x 'string) 'list)
(if (stringp x)
nil (make-character-list x))))
Theorem: <coerce-inverse-2-better>
(defthm coerce-inverse-2-better
(equal (coerce (coerce x 'list) 'string)
(if (stringp x) x "")))
That takes care of that
||#
; Correspond (or not) with Linux system calls -- the low-level stuff...
; Add file -- or, if you will, create a file with some initial contents
; and so on...
|