File: example.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (428 lines) | stat: -rw-r--r-- 12,579 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
; Copyright (C) 2007 by Shant Harutunian
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")
(include-book "computed-hints")
(include-book "o-real-p")
(include-book "nsa")

;; Enable abs, <-cancel-divisors and divisor cancellation as needed.

(in-theory (disable equal-cancel-divisors <-cancel-divisors))

(set-default-hints '((staged-hints stable-under-simplificationp
                                   nil ;;restart on new id
                                   '((:in-theory (enable abs
                                                         equal-cancel-divisors <-cancel-divisors)))
                                   nil nil 0)))

;; Macro defining non-negative real

(defmacro nneg-realp (r)
  `(and (realp ,r)
        (<= 0 ,r)))

;; Macro defining the constraint on the variable eps.
;; In this case, we require that 0 < eps <= 1/100.

(defmacro small-realp (eps)
  `(and (realp ,eps)
        (<= ,eps 1/100)
        (< 0 ,eps)))

;; Define accessor function for accessing particular variables
;; from the state X

(defun getPosReq (X)
  (nth 0 X))

(defun getPreset (X)
  (nth 1 X))

(defun getPos (X)
  (nth 2 X))

(defun getPosAo (X)
  (nth 3 X))

(defun getTmr (X)
  (nth 4 X))

;; Define a function which creates a system state, consisting
;; of the variables of the system.

(defun make-state (posReq preset pos posAo tmr)
  (list posReq preset pos posAo tmr))

;; Define theorems relating the accessor function and the make
;; state functions.

(defthm state-thm
  (and
   (equal (getPosReq (make-state posReq preset pos posAo tmr)) posReq)
   (equal (getPreset (make-state posReq preset pos posAo tmr)) preset)
   (equal (getPos (make-state posReq preset pos posAo tmr)) pos)
   (equal (getPosAo (make-state posReq preset pos posAo tmr)) posAo)
   (equal (getTmr (make-state posReq preset pos posAo tmr)) tmr)))

;; Disable the accessor functions and make-state function and rely upon the
;; rewrite rules associated with above theorem.

(in-theory (disable getPosReq getPreset getPos getPosAo getTmr
                    make-state))

;; StateP is a predicate which recognizes whether some variable is a
;; state variable.

(defun statep (x)
  (equal x
         (make-state (getPosReq x)
                     (getPreset x)
                     (getPos x)
                     (getPosAo x)
                     (getTmr x))))

;; The system assignment function, Y, includes the definition of the
;; computer program,
;; the floor function representing the analog to digital conversion,
;; and the reset of the timer variable.

(defun Y (X)
  (make-state
   (getPosReq x)
   (getPreset x)
   (getPos x)
   ;;posAo
   (cond
    ((> (- (floor1 (getPos X)) (getposReq X)) 2)
     (- (getposAo X) 5))
    ((< (- (floor1 (getPos X)) (getposReq X)) -3)
     (+ (getposAo X) 5))
    (t (getposAo X)))
   ;;tmr
   0))

;; The step definition of the physical system, including timer

(defun sigma (X eps)
  (make-state
   (getPosReq x)
   (getPreset x)
   ;;pos
   (cond
    ((> (getPos X) (getPosAo X))
     (- (getpos X) eps))
    ((< (getPos X) (getPosAo X))
     (+ (getpos X) eps))
    (t (getPos X)))
   (getposAo X)
   ;;tmr
   (+ (getTmr X) eps)))

(defun B-Y (X)
  (>= (getTmr X) (getPreset X)))

;; The system step function, as define by the single step function
;; sigma, the assignment function Y, and assignment predicate B-Y.

(defun sys-step (X eps)
  (cond
   ((B-Y X) (Y X))
   (t       (sigma X eps))))

;; The positive clamp function "clamps" the given r to a non-negative value.
;; If the value is negative, it returns zero. Otherwise, it returns
;; the given value.
;; It should be noted that the function is continuous in r.

(defun pos-clamp (r)
  (if (<= 0 r)
      r 0))

;; A component function of the overall measure m.
;; Intuitively, this measure function measures that the difference
;; between pos and posAo decreases over time.
;; This measure is 'active' when the difference between pos and
;; posAo is large.

(defun m1 (X eps)
  (cond
   ((<= (abs (- (getPosAo X) (getPos X)))
        (+ eps (pos-clamp (- (getPreset X) (getTmr X))))) 0)
   (t (+ 1 (/ (- (abs (- (getPosAo X) (getPos X)))
                 (+ (- (getPreset X) (getTmr X)) eps))
              eps)))))

;; A component function of the overall measure m.
;; Intuitively, this measure function measures that the difference
;; between posReq and posAo decreases over time.

(defun m2 (X eps)
  (declare (ignore eps))
  (if (and
       (<= (- (getPosAo X) (getPosReq X)) 3)
       (>= (- (getPosAo X) (getPosReq X)) -3))
      0
    (abs (- (getPosAo X) (getPosReq X)))))

;; A component function of the overall measure m.
;; Intuitively, this measure function measures that the difference
;; between pos and posAo decreases over time.
;; This measure is 'active' when the difference between pos and
;; posAo is small.

(defun m3 (X eps)
  (if (<= (abs (- (getPos X) (getPosAo X))) eps)
      0
    (/ (abs (- (getPos X) (getPosAo X))) eps)))

;; A component function of the overall measure m.
;; Intuitively, this measure function measures that the
;; timer changes in each step. This is useful for showing a
;; decreasing measure while the other system variables are unchanging.

(defun m4 (X eps)
  (cond
   ((< (getPreset X) (getTmr X)) 0)
   (t (+ 1 (/ (- (getPreset X) (getTmr X)) eps)))))

;; The overall measure function

(defun m (X eps)
  (cond ((and
          (< (m1 x eps) 1)
          (< (m2 x eps) 1))
         (make-ord 1 (+ 1 (m3 x eps))
                   (m4 x eps)))
        ((< (m1 x eps) 1)
         (make-ord 2 (+ 1 (m2 x eps))
                   (make-ord 1 (+ 1 (m3 x eps))
                             (m4 x eps))))
        (t (make-ord 3 (+ 1 (m1 x eps)) (m4 x eps)))))

;; Definition of the domain of the system variables and constants.

(defun valid-state (X eps)
  (and (realp (getPos X))
       (realp (getPreset X))
       (realp (getTmr X))
       (integerp (getPosAo X))
       (integerp (getPosReq X))
       (<= 51/10 (getPreset X))
       (<= 0 (getTmr x))
       (<= (getTmr x) (+ (getpreset x) eps))))

;; Cuong Chau: Disable the following control output setting.
;; (set-inhibit-output-lst '(proof-tree prove))

;; By requirement A1, we must show that if the assignment
;; predicate is satisfied in the current step, it is
;; not satisfied in the next step.

(defthm step-A1-thm
  (implies
   (and
    (valid-state x eps)
    (B-Y x))
   (not (B-Y (Y X))))
  :rule-classes nil)

;; Since the computer executes every delta time
;; period which is greater than preset, and since this
;; preset is a positive, standard number, then
;; to satisfy requirement A2, we must show that
;; the assignment function is limited if the
;; state variables are limited and satisfy B-Y.

(defthm step-A2-thm
  (implies
   (and
    (valid-state x eps)
    (B-Y x)
    (i-limited (getPosAo x))
    (i-limited (getTmr x))
    (i-limited (getPos x))
    (i-limited (getPreset x))
    (i-limited (getPosReq x)))
   (and
    (i-limited (getPosAo (Y x)))
    (i-limited (getTmr (Y x)))
    (i-limited (getPos (Y x)))
    (i-limited (getPreset (Y x)))
    (i-limited (getPosReq (Y x)))))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable i-large))))

; Added by Matt K.: Avoids rewriter loop in m1-lt-1.
(local (in-theory (disable commutativity-2-of-+)))

;; A theorem that states the formula (< (m1 x eps) 1) is equal
;; to the corresponding safety predicate
;; Hence, we will use the shorter formula
;; (< (m1 x eps) 1) in the remainder of this session.

(defthm m1-lt-1
  (implies
   (and
    (valid-state x eps)
    (small-realp eps))
   (iff (< (m1 x eps) 1)
        (<= (abs (- (getPosAo X) (getPos X)))
            (+ eps (pos-clamp (- (getPreset X) (getTmr X)))))))
  :rule-classes nil)

;; A theorem that states the formula (< (m2 x eps) 1) is equal
;; to the corresponding safety predicate
;; Hence, we will use the shorter formula (< (m2 x eps) 1)
;; in the remainder of this session.

(defthm m2-lt-1
  (implies
   (and
    (valid-state x eps)
    (small-realp eps))
   (iff (< (m2 x eps) 1)
        (and
         (<= (- (getPosAo X) (getPosReq X)) 3)
         (>= (- (getPosAo X) (getPosReq X)) -3))))
  :rule-classes nil)

;; Check that a valid state is an ordinal real

(defthm ordinal-real-thm
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (not (and
              (< (m1 x eps) 1)
              (< (m2 x eps) 1)
              (<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))))
   (o-real-p (m x eps))))

;; If we start in valid state, then next state also satisfies valid state

(defthm valid-state-preserve
  (implies
   (and (valid-state x eps)
        (small-realp eps))
   (valid-state (sys-step x eps) eps)))

;; The following theorem shows that once m1 < 1, then it remains so
;; similarly, once m2 < 1, it remains so. These results
;; are used to show that if m1 < 1 and m2 < 1, then
;; -3-eps <= (abs (- pos PosReq)) <= 3+eps is true
;; for all ensuing states.

(defthm m-1-preserve
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (< (m1 x eps) 1))
   (< (m1 (sys-step x eps) eps) 1))
  :rule-classes :linear)

(defthm m-2-preserve
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (< (m1 x eps) 1)
        (< (m2 x eps) 1))
   (< (m2 (sys-step x eps) eps) 1))
  :rule-classes :linear)

(defthm pos-posReq-preserve
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (< (m1 x eps) 1)
        (< (m2 x eps) 1)
        (<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))
   (<= (abs (- (getpos (sys-step x eps))
               (getposReq (sys-step x eps)))) (+ 3 (* 2 eps))))
  :rule-classes :linear)

(defthm safety-property-preserve
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (< (m1 x eps) 1)
        (< (m2 x eps) 1)
        (<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))
   (and
    (valid-state (sys-step x eps) eps) ;; Cuong Chau: I changed "(valid-state x
    ;; eps)" to "(valid-state (sys-step x eps) eps)"
    (< (m1 (sys-step x eps) eps) 1)
    (< (m2 (sys-step x eps) eps) 1)
    (<= (abs (- (getpos (sys-step x eps))
                (getposReq (sys-step x eps)))) (+ 3 (* 2 eps)))))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable sys-step valid-state m1 m2))
          ("Subgoal 2" :use ((:instance pos-posReq-preserve)))))

;; The measure is decreasing on the real ordinals, with
;; comparison o<-1

(defthm m-1-decreases
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (not (< (m1 x eps) 1)))
   (o<-1 (m (sys-step x eps) eps) (m x eps))))

(defthm m-2-decreases
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (< (m1 x eps) 1)
        (not (< (m2 x eps) 1)))
   (o<-1 (m (sys-step x eps) eps) (m x eps))))

(defthm m-decreases
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (not (and
              (< (m1 x eps) 1)
              (< (m2 x eps) 1)
              (<= (abs (- (getpos x) (getPosReq x))) (+ 3 (* 2 eps))))))
   (o<-1 (m (sys-step x eps) eps) (m x eps))))

;; Cuong Chau: Disable the following control output setting.
;; (set-inhibit-output-lst '(proof-tree))

(in-theory (disable o<-1 o-floor1 o-real-p sys-step valid-state m m1 m2 m3))

;; Fix m so that it always returns an ordinal

(defun m-fix (x eps)
  (cond
   ((not (and (valid-state x eps)
              (small-realp eps)
              (not (and
                    (< (m1 x eps) 1)
                    (< (m2 x eps) 1)
                    (<= (abs (- (getpos x) (getPosReq x)))
                        (+ 3 (* 2 eps)))))))
    0)
   (t (o-floor1 (m x eps)))))

;; m-fix is an ordinal

(defthm m-fix-o-p
  (o-p (m-fix x eps)))

;; sys-step decreases, using measure m-fix

(defthm m-fix-decreases
  (implies
   (and (valid-state x eps)
        (small-realp eps)
        (not (and
              (< (m1 x eps) 1)
              (< (m2 x eps) 1)
              (<= (abs (- (getpos x) (getPosReq x)))
                  (+ 3 (* 2 eps))))))
   (o< (m-fix (sys-step x eps) eps) (m-fix x eps))))