File: o-real-p.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (136 lines) | stat: -rw-r--r-- 3,392 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
; Copyright (C) 2007 by Shant Harutunian
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

; Definition of the measure structure less than operator

(defun o<-1 (x y)
  (cond ((o-finp x)
         (or (not (o-finp y)) (<= (+ X 1) Y)))
        ((o-finp y) nil)
        ((equal (o-first-expt x)
                (o-first-expt y))
         (if (equal (o-first-coeff x)
                    (o-first-coeff y))
             (o<-1 (o-rst x) (o-rst y))
           (<= (+ (o-first-coeff x) 1)
               (o-first-coeff y))))
        (t (o<-1 (o-first-expt x)
                 (o-first-expt y)))))

; The following defines a predicate which
; is true if x is a measure structure

(defun o-real-p (x)
  (cond ((o-finp x)
         (and
          (realp X)
          (<= 0 x)))
        ((consp (car x))
         (and (o-real-p (o-first-expt x))
              (if (acl2-numberp (o-first-expt x))
                  (<= 1 (o-first-expt x))
                t)
              (realp (o-first-coeff x))
              (<= 1 (o-first-coeff x))
              (o-real-p (o-rst x))
              (o<-1 (o-first-expt (o-rst x))
                    (o-first-expt x))))
        (t nil)))

; Recursively traverse
; a measure structure applying floor
; to the real values in the structure
; The intent is to convert a measure structure to
; an ordinal.

(defun o-floor1 (x)
  (cond ((o-finp x) (floor1 x))
        ((consp (car x))
         (make-ord (o-floor1 (o-first-expt x))
                   (floor1 (o-first-coeff x))
                   (o-floor1 (o-rst x))))
        (t nil)))

(defthm o<-1-floor1-neq-thm
  (implies
   (and
    (o-real-p x)
    (o-real-p y)
    (o<-1 x y))
   (not (equal (o-floor1 x) (o-floor1 y)))))

; The following theorem states that
; showing a measure structure x is less than y,
; using the o<-1 operator
; implies that the ordinals attained by
; applying o-floor1 to x and y, respectively,
; are less than each other.
; Hence, in our proof obligation, we need only
; show that (o<-1 x y), this theorem may then
; be applied to show the respective ordinals
; attained by applying o-floor1 are less
; than each other.

(defthm o<-1-floor1-o<-thm
  (implies
   (and
    (o-real-p x)
    (o-real-p y)
    (o<-1 x y))
   (o< (o-floor1 x) (o-floor1 y))))

(defthm floor1-posp
  (implies
   (and
    (realp x)
    (<= 1 x))
   (posp (floor1 x))))

(defthm o-floor1-non-zero
  (implies
   (and
    (o-real-p x)
    (o-real-p y)
    (o<-1 y x))
   (not (equal 0 (o-floor1 x)))))

(defthm o-real-p-caadr
  (implies
   (and
    (o-real-p x)
    (consp x)
    (consp (cdr x)))
   (o-real-p (caadr x))))

(defthm o-real-p-caadr-2
  (implies
   (and
    (o-real-p x)
    (consp x))
   (equal (caar (o-floor1 x)) (o-floor1 (caar x))))
  :hints (("Goal" :do-not-induct t)))

(defthm o-floor1-consp
  (implies
   (and
    (consp x)
    (o-real-p x))
   (consp (o-floor1 x))))

(defthm consp-not-zero
  (implies
   (consp x)
   (not (equal 0 x))))

; The following states that if x is a measure
; structure, then (o-floor1 x) is an ordinal.

(defthm o-floor1-thm
  (implies
   (o-real-p x)
   (o-p (o-floor1 x)))
  :hints (("Goal" :do-not '(generalize)
           :induct (o-real-p x)
           :do-not-induct t)))