File: phi-unique.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (500 lines) | stat: -rw-r--r-- 16,670 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
; Copyright (C) 2007 by Shant Harutunian
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

(include-book "arith-nsa4")
(include-book "abs")
(include-book "eexp")
(include-book "phi-exists")
(include-book "phi-properties")
(include-book "computed-hints")
(include-book "tm-floor")

(in-theory (disable i-large))
(in-theory (disable standard-part-<=))

(defstub phi2 (tm) t)

(defaxiom phi2-type
  (implies
   (and
    (realp tm))
   (realp (phi2 tm)))
  :rule-classes :type-prescription)

(defaxiom phi2-standard-thm
  (implies
   (and
    (realp tm)
    (standard-numberp tm))
   (standard-numberp (phi2 tm)))
  :rule-classes ((:type-prescription) (:rewrite)))

(defun resid2-tm (tm eps)
  (+ (phi2 (+ tm eps))
     (- (phi2 tm))
     (- (* eps (f (phi2 tm))))))

(defthm resid2-tm-type
  (implies
   (and
    (realp tm)
    (realp eps))
   (realp (resid2-tm tm eps)))
  :rule-classes :type-prescription)

(defaxiom phi2-deriv
  (implies
   (and
    (realp tm)
    (i-limited tm)
    (realp eps)
    (not (equal eps 0))
    (i-small eps))
   (equal (standard-part (/ (- (phi2 (+ tm eps)) (phi2 tm)) eps))
          (standard-part (f (phi2 tm))))))

(defthm phi2-equal-thm
  (implies
   (and
    (realp tm)
    (realp eps))
   (equal (+ (phi2 tm)
             (* eps (f (phi2 tm)))
             (resid2-tm tm eps))
          (phi2 (+ tm eps)))))

(defthm resid2/eps-small-thm
  (implies
   (and
    (realp tm)
    (i-limited tm)
    (realp eps)
    (not (equal eps 0))
    (i-small eps))
   (equal (standard-part (/ (resid2-tm tm eps) eps))
          0))
  :hints (("Goal" :use ((:instance phi2-deriv)))))

(defthm /eps-gt-1-thm
  (implies
   (and
    (realp eps)
    (not (equal eps 0))
    (equal (standard-part eps) 0))
   (< 1 (abs (/ eps))))
  :hints (("Goal" :use ((:instance standard-part-<= (y 1) (x (/ (abs eps))))
                        (:instance i-large (x (abs (/ eps))))))))

(defthm resid2-small-thm
  (implies
   (and
    (realp tm)
    (i-limited tm)
    (realp eps)
    (not (equal eps 0))
    (i-small eps))
   (equal (standard-part (resid2-tm tm eps))
          0))
  :hints ((standard-part-hint stable-under-simplificationp clause)
          ("Goal" :in-theory (disable abs resid2-tm abs-*-thm)
           :use ((:instance resid2/eps-small-thm)
                 (:instance pos-factor-<-thm
                            (x 1)
                            (y (abs (/ eps)))
                            (a (abs (resid2-tm tm eps))))
                 (:instance abs-*-thm
                            (x (/ eps))
                            (y (resid2-tm tm eps)))))))

(defthm phi2-tm-continuous-thm
  (implies
   (and
    (realp tm)
    (i-limited tm))
   (equal (standard-part (phi2 tm))
          (phi2 (standard-part tm))))
  :hints (("Goal" :in-theory (disable resid2-tm standardp-standard-part)
           :cases ((equal tm (standard-part tm))
                   (not (equal tm (standard-part tm)))))
          ("Subgoal 1" :use ((:instance phi2-equal-thm
                                        (eps (- tm (standard-part tm)))
                                        (tm (standard-part tm)))
                             (:instance resid2-small-thm
                                        (eps (- tm (standard-part tm)))
                                        (tm (standard-part tm)))
                             (:instance standardp-standard-part
                                        (x tm))
                             (:instance standards-are-limited
                                        (x (phi2 (standard-part tm))))))
          ("Subgoal 2" :use ((:instance standardp-standard-part
                                        (x tm))))))

(defthm standardp-standard-part-limited
  (implies
   (and
    (acl2-numberp x)
    (standard-numberp (standard-part x)))
   (i-limited x))
  :hints (("Goal" :use ((:instance standard+small->i-limited
                                   (x (standard-part x))
                                   (eps (- x (standard-part x))))))))

(defthm phi2-limited-thm
  (implies
   (and
    (realp tm)
    (i-limited tm))
   (i-limited (phi2 tm)))
  :rule-classes ((:type-prescription) (:rewrite))
  :hints (("Goal" :use ((:instance standardp-standard-part-limited
                                   (x (phi2 tm)))))))

(defthm resid2-tm-limited
  (implies
   (and
    (realp eps)
    (realp tm)
    (i-limited tm)
    (i-small eps))
   (i-limited (resid2-tm tm eps)))
  :rule-classes ((:type-prescription) (:rewrite)))

(defun max-abs-resid2-tm (n eps)
  (cond
   ((zp n) (abs (resid2-tm 0 eps)))
   (t (max (abs (resid2-tm (* n eps) eps))
           (max-abs-resid2-tm (- n 1) eps)))))

(defthm max-abs-resid2-is-bound
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (integerp m)
    (<= 0 m)
    (<= m n))
   (<= (abs (resid2-tm (* eps m) eps))
       (max-abs-resid2-tm n eps)))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable abs))))

(defun find-n (n eps)
  (cond
   ((zp n) 0)
   ((equal (abs (resid2-tm (* n eps) eps))
           (max-abs-resid2-tm n eps)) n)
   (t (find-n (- n 1) eps))))

(defthm find-n-is-max
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n))
   (equal (abs (resid2-tm (* eps (find-n n eps)) eps))
          (max-abs-resid2-tm n eps)))
  :rule-classes nil)

(defthm find-n-range
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n))
   (and
    (<= 0 (find-n n eps))
    (<= (find-n n eps) n)))
  :rule-classes :linear)

(defthm find-n-limited
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n)
    (i-limited (* eps n)))
   (i-limited (* eps (find-n n eps))))
  :hints (("Goal" :in-theory (disable abs)
           :do-not-induct t
           :use ((:instance sandwich-limited-thm
                            (u 0)
                            (v (* eps n))
                            (x (* eps (find-n n eps))))
                 (:instance pos-factor-<=-thm
                            (x 0)
                            (y (find-n n eps))
                            (a eps))
                 (:instance pos-factor-<=-thm
                            (x (find-n n eps))
                            (y n)
                            (a eps))
                 (:instance find-n-range)))))

(defthm max-abs-resid2-tm-small
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n)
    (i-small eps)
    (i-limited (* eps n)))
   (equal (standard-part (* (/ eps) (max-abs-resid2-tm n eps)))
          0))
  :hints (("Goal" :in-theory (disable abs
                                      resid2-tm
                                      abs-*-thm
                                      ABS-POS-*-LEFT-THM
                                      <-CANCEL-DIVISORS
                                      EQUAL-CANCEL-DIVISORS)
           :do-not-induct t
           :use ((:instance find-n-is-max)
                 (:instance abs-pos-*-left-thm
                            (x (/ eps))
                            (y (RESID2-TM
                                (EPS-N-FUN EPS (FIND-N N EPS))
                                EPS)))
                 (:instance resid2/eps-small-thm
                            (tm (* eps (find-n n eps)))
                            )))))

(defthm max-abs-resid2-tm-limited
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n)
    (i-small eps)
    (i-limited (* eps n)))
   (i-limited (* (/ eps) (max-abs-resid2-tm n eps))))
  :rule-classes ((:rewrite) (:type-prescription)))

(defthm max-abs-resid2-tm-type
  (implies
   (and
    (realp eps)
    (integerp n))
   (and
    (realp (max-abs-resid2-tm n eps))
    (<= 0 (max-abs-resid2-tm n eps))))
  :rule-classes :type-prescription)

(defthm max-abs-resid2-tm-floor-small-hint
  (implies
   (and
    (realp eps)
    (< 0 eps)
    (integerp n)
    (<= 0 n)
    (i-limited tm)
    (i-small eps)
    (i-limited (* eps n)))
   (equal (standard-part (* tm (/ eps)
                            (max-abs-resid2-tm n eps)))
          0))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable abs *-commut-3way)
           :do-not-induct t
           :use ((:instance max-abs-resid2-tm-small)))))

(defthm max-abs-resid2-tm-floor-small
  (implies
   (and
    (realp tm)
    (<= 0 tm)
    (i-limited tm))
   (equal (standard-part (* (floor1 (* tm (i-large-integer)))
                            (max-abs-resid2-tm
                             (floor1 (* tm (i-large-integer)))
                             (/ (i-large-integer)))))
          0))
  :hints ((standard-part-hint stable-under-simplificationp clause)
          ("Goal" :in-theory (disable abs resid2-tm
                                      ;; Cuong Chau: Proof failed if not
                                      ;; disable EPS-N-FUN-RW-3-THM.
                                      EPS-N-FUN-RW-3-THM)
           :do-not-induct t
           :use ((:instance max-abs-resid2-tm-small
                            (eps (/ (i-large-integer)))
                            (n (floor1 (* tm (i-large-integer)))))
                 (:instance pos-factor-<-thm
                            (x (- (* tm (i-large-integer)) 1))
                            (y (floor1 (* tm (i-large-integer))))
                            (a (max-abs-resid2-tm
                                (floor1 (* tm (i-large-integer)))
                                (/ (i-large-integer)))))
                 (:instance pos-factor-<=-thm
                            (x (floor1 (* tm (i-large-integer))))
                            (y (* tm (i-large-integer)))
                            (a (max-abs-resid2-tm
                                (floor1 (* tm (i-large-integer)))
                                (/ (i-large-integer)))))))
          ("Subgoal 1" :in-theory (disable abs resid2-tm)
           :use ((:instance max-abs-resid2-tm-floor-small-hint
                            (n (floor1 (* tm (i-large-integer))))
                            (eps (/ (i-large-integer))))))))

(defun n-induct-scheme (n)
  (cond
   ((zp n) 0)
   (t (n-induct-scheme (- n 1)))))

(defthm phi-run-step-diff
  (implies
   (and
    (realp x)
    (realp eps)
    (< 0 eps)
    (integerp n)
    (< 0 n)
    (integerp m)
    (<= n m))
   (<= (abs (- (step1 x eps)
               (phi2 (* n eps))))
       (+ (* (+ 1 (* eps (L))) (abs (- x (phi2 (* (- n 1) eps)))))
          (max-abs-resid2-tm m eps))))
  :hints (("Goal" :in-theory (disable abs resid2-tm)
           :do-not '(generalize)
           :do-not-induct t
           :use ((:instance f-lim-thm
                            (x1 x)
                            (x2 (phi2 (* (- n 1) eps))))
                 (:instance max-abs-resid2-is-bound
                            (m (- n 1))
                            (n m))
                 (:instance pos-factor-<=-thm
                            (x (abs (- (f x) (f (phi2 (* (- n 1) eps))))))
                            (y (* (L) (abs (- x (phi2 (* (- n 1) eps))))))
                            (a eps))
                 (:instance phi2-equal-thm
                            (tm (* (- n 1) eps)))
                 (:instance abs-pos-*-left-thm
                            (x eps)
                            (y (+ (F X)
                                  (* -1
                                     (f (PHI2 (+ (* -1 EPS) (* EPS N))))))))
                 (:instance abs-triangular-inequality-3way-thm
                            (x (- x (phi2 (* (- n 1) eps))))
                            (y (- (* eps (f x))
                                  (* eps (f (phi2 (* (- n 1) eps))))))
                            (z (- (resid2-tm (* (- n 1) eps) eps))))))))

(defthm eexp-unite-exponents-thm
  (implies
   (and
    (realp x)
    (realp y)
    (realp z))
   (equal (* (eexp x) y (eexp z))
          (* y (eexp (+ x z))))))

(defthm phi2-run-eq-thm
  (implies
   (and
    (integerp m)
    (integerp n)
    (<= 0 n)
    (<= n m)
    (< 0 eps)
    (realp eps))
   (<= (abs (- (run (phi2 0) n eps)
               (phi2 (* eps n))))
       (* (eexp (* eps n (L)))
          n
          (max-abs-resid2-tm m eps))))
  :rule-classes nil
  :hints (("Goal" :do-not '(generalize)
           :induct (n-induct-scheme n)
           :do-not-induct t
           :in-theory (disable abs step1 resid2-tm MAX-ABS-RESID2-TM))
          ("Subgoal *1/2" :use ((:instance phi-run-step-diff
                                           (x (run (phi2 0) (- n 1) eps)))
                                (:instance pos-factor-<=-thm
                                           (x (ABS (+ (RUN (PHI2 0) (+ -1 N) EPS)
                                                      (* -1 (PHI2 (+ (* -1 EPS)
                                                                     (* EPS N)))))))
                                           (y (+ (* -1 (MAX-ABS-RESID2-TM M EPS)
                                                    (EEXP (+ (* -1 (L) EPS)
                                                             (* (L) EPS N))))
                                                 (* N (MAX-ABS-RESID2-TM M EPS)
                                                    (EEXP (+ (* -1 (L) EPS)
                                                             (* (L) EPS N))))))
                                           (a (eexp (* (L) eps))))
                                (:instance pos-factor-<=-thm
                                           (x 1)
                                           (y (EEXP (* (L) EPS N)))
                                           (a (MAX-ABS-RESID2-TM M EPS)))
                                (:instance 1+x-<=eexp-thm
                                           (x (* eps (L))))
                                (:instance pos-factor-<=-thm
                                           (x (+ 1 (* eps (L))))
                                           (y (eexp (* eps (L))))
                                           (a (ABS (+ (RUN (PHI2 0) (+ -1 N) EPS)
                                                      (* -1 (PHI2 (+ (* -1 EPS)
                                                                     (* EPS N)))))))))))
  :otf-flg t)

(defthm phi2-st-run-eq-hint
  (implies
   (and
    (realp tm)
    (i-limited y)
    (<= 0 tm)
    (i-limited tm))
   (equal (standard-part (* y
                            (floor1 (* tm (i-large-integer)))
                            (max-abs-resid2-tm
                             (floor1 (* tm (i-large-integer)))
                             (/ (i-large-integer)))))
          0))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable abs resid2-tm)
           :do-not-induct t
           :use ((:instance max-abs-resid2-tm-floor-small)))))

(defthm phi2-st-run-eq-thm
  (implies
   (and
    (realp tm)
    (standard-numberp tm)
    (<= 0 tm))
   (equal (standard-part (phi2 tm))
          (standard-part (phi (phi2 0) tm))))
  :rule-classes nil
  :hints ((standard-part-hint stable-under-simplificationp clause)
          ("Goal" :in-theory (disable abs
                                      ;; Cuong Chau: Proof failed if not
                                      ;; disable the following two lemmas.
                                      EPS-N-FUN-RW-1-THM
                                      EPS-N-FUN-RW-2-THM)
           :use ((:instance phi2-run-eq-thm
                            (eps (/ (i-large-integer)))
                            (n (floor1 (* tm (i-large-integer))))
                            (m (floor1 (* tm (i-large-integer)))))
                 (:instance phi2-st-run-eq-hint
                            (y (EEXP (* (L) (TM-FUN TM)))))))))

;; --------------------------------------------
;; The following is the theorem which states
;; that, for any phi2 satisfying the
;; differential equation, phi2 is equal to
;; phi evaluated at initial condition phi2(0).
;; --------------------------------------------

(defthm-std phi2-st-run-eq-std-thm
  (implies
   (and
    (realp tm)
    (<= 0 tm))
   (equal (phi2 tm)
          (phi (phi2 0) tm)))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable abs)
           :use ((:instance phi2-st-run-eq-thm)))))