1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "lifted-termp")
(include-book "complementary")
(%interactive)
;; BOZO move this to arithmetic
(defthm |(zp (+ 1 a))|
;; Why have this silly rule? It's useful when the more expensive arithmetic
;; rules are disabled. For example, (= 0 (+ a b)) introduces case-splits.
;; Yet we often need a fact like this in inductive proofs where some count is
;; being decremented.
(equal (zp (+ 1 a))
nil))
(%autoprove |(zp (+ 1 a))|)
(%autoadmit clause.split-count)
(%autoprove natp-of-clause.split-count
(%restrict default clause.split-count (equal x 'x)))
(%autoprove |(< 0 (clause.split-count x))|
(%restrict default clause.split-count (equal x 'x)))
(%autoprove clause.split-count-when-clause.negative-termp
(%restrict default clause.split-count (equal x 'x)))
(%autoprove clause.split-count-when-if
(%restrict default clause.split-count (equal x 'x)))
(%autoadmit clause.split-count-list)
(%autoprove clause.split-count-list-when-not-consp
(%restrict default clause.split-count-list (equal x 'x)))
(%autoprove clause.split-count-list-of-cons
(%restrict default clause.split-count-list (equal x '(cons a x))))
(%autoprove natp-of-clause.split-count-list
(%restrict default clause.split-count-list (equal x 'x)))
;; BOZO consider moving this to a lower level, particularly for the builder.
(%autoadmit clause.aux-split-trivial-branchp)
(%autoprove booleanp-of-clause.aux-split-trivial-branchp
(%enable default clause.aux-split-trivial-branchp))
(defsection clause.aux-split-trivial-branch-bldr
(%autoadmit clause.aux-split-trivial-branch-bldr)
(local (%enable default
clause.aux-split-trivial-branchp
clause.aux-split-trivial-branch-bldr
clause.aux-split-goal))
(%autoprove logic.appealp-of-clause.aux-split-trivial-branch-bldr)
(%autoprove logic.conclusion-of-clause.aux-split-trivial-branch-bldr)
(%autoprove logic.proofp-of-clause.aux-split-trivial-branch-bldr))
(local (%disable default
expensive-arithmetic-rules
expensive-arithmetic-rules-two
type-set-like-rules
formula-decomposition
expensive-term/formula-inference
expensive-subsetp-rules
unusual-consp-rules))
(%autoadmit clause.aux-split)
;; (defmacro %clause.aux-split-induction (todo done)
;; `(%induct (clause.split-count-list ,todo)
;; ((not (consp ,todo))
;; nil)
;; ((and (consp ,todo)
;; (clause.negative-termp (car ,todo))
;; (clause.negative-termp (clause.negative-term-guts (car ,todo))))
;; (((,todo (cons (clause.negative-term-guts (clause.negative-term-guts (car ,todo)))
;; (cdr ,todo))))))
;; ((and (consp ,todo)
;; (clause.negative-termp (car ,todo))
;; (not (clause.negative-termp (clause.negative-term-guts (car ,todo))))
;; (logic.functionp (clause.negative-term-guts (car ,todo)))
;; (equal (logic.function-name (clause.negative-term-guts (car ,todo))) 'if)
;; (equal (len (logic.function-args (clause.negative-term-guts (car ,todo)))) 3))
;; (((,todo (cons (logic.function 'not (list (first (logic.function-args (clause.negative-term-guts (car ,todo))))))
;; (cons (logic.function 'not (list (second (logic.function-args (clause.negative-term-guts (car ,todo))))))
;; (cdr ,todo)))))
;; ((,todo (cons (first (logic.function-args (clause.negative-term-guts (car ,todo))))
;; (cons (logic.function 'not (list (third (logic.function-args (clause.negative-term-guts (car ,todo))))))
;; (cdr ,todo)))))))
;; ((and (consp ,todo)
;; (not (clause.negative-termp (car ,todo)))
;; (logic.functionp (car ,todo))
;; (equal (logic.function-name (car ,todo)) 'if)
;; (equal (len (logic.function-args (car ,todo))) 3))
;; (((,todo (cons (logic.function 'not (list (first (logic.function-args (car ,todo)))))
;; (cons (second (logic.function-args (car ,todo)))
;; (cdr ,todo)))))
;; ((,todo (cons (first (logic.function-args (car ,todo)))
;; (cons (third (logic.function-args (car ,todo)))
;; (cdr ,todo)))))))
;; ((and (consp ,todo)
;; (clause.negative-termp (car ,todo))
;; (not (clause.negative-termp (clause.negative-term-guts (car ,todo))))
;; (not (and (logic.functionp (clause.negative-term-guts (car ,todo)))
;; (equal (logic.function-name (clause.negative-term-guts (car ,todo))) 'if)
;; (equal (len (logic.function-args (clause.negative-term-guts (car ,todo)))) 3))))
;; (((,todo (cdr ,todo))
;; (,done (cons (logic.function 'not (list (clause.negative-term-guts (car ,todo)))) ,done)))))
;; ((and (consp ,todo)
;; (not (clause.negative-termp (car ,todo)))
;; (not (and (logic.functionp (car ,todo))
;; (equal (logic.function-name (car ,todo)) 'if)
;; (equal (len (logic.function-args (car ,todo))) 3))))
;; (((,todo (cdr ,todo))
;; (,done (cons (car ,todo) ,done)))))))
(%autoprove true-listp-of-clause.aux-split
(%autoinduct clause.aux-split todo done)
;(%clause.aux-split-induction todo done)
(%restrict default clause.aux-split (equal todo 'todo)))
;; (%autoprove consp-of-clause.aux-split
;; (%clause.aux-split-induction todo done)
;; (%restrict default clause.aux-split (equal todo 'todo)))
;; (%autoprove clause.aux-split-under-iff
;; (%use (%instance (%thm consp-of-clause.aux-split)))
;; (%disable default consp-of-clause.aux-split [outside]consp-of-clause.aux-split))
(%autoprove forcing-term-list-listp-of-clause.aux-split
(%autoinduct clause.aux-split todo done)
;(%clause.aux-split-induction todo done)
(%restrict default clause.aux-split (equal todo 'todo)))
(%autoprove forcing-term-list-list-atblp-of-clause.aux-split
(%autoinduct clause.aux-split todo done)
;(%clause.aux-split-induction todo done)
(%restrict default clause.aux-split (equal todo 'todo)))
(%autoprove forcing-cons-listp-of-clause.aux-split
(%autoinduct clause.aux-split todo done)
;(%clause.aux-split-induction todo done)
(%restrict default clause.aux-split (equal todo 'todo)))
;; BOZO we don't bother to show that splitting is complete in the sense of the
;; lifted-guts terms. Maybe we eventually want to do that, but I don't think
;; we will need it for now.
;; (local (%enable default logic.term-formula))
;; (local (%disable default
;; equal-of-cons-rewrite
;; forcing-equal-of-logic.pequal-rewrite-two
;; forcing-equal-of-logic.pnot-rewrite-two
;; forcing-equal-of-logic.por-rewrite-two
;; forcing-equal-of-logic.pequal-rewrite
;; forcing-equal-of-logic.pnot-rewrite
;; forcing-equal-of-logic.por-rewrite))
;; (%autoprove clause.aux-split-when-double-negative
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-negative-1
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-negative-2
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-negative-3
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-negative-4
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-positive-1
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-positive-2
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-positive-3
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-positive-4
;; (%restrict default clause.aux-split (equal todo '(cons a x))))
;; (%autoprove clause.aux-split-when-not-consp
;; (%restrict default clause.aux-split (equal todo 'todo)))
;; (%create-theory clause.aux-split-openers)
;; (%enable clause.aux-split-openers
;; clause.aux-split-when-double-negative
;; clause.aux-split-when-negative-1
;; clause.aux-split-when-negative-1
;; clause.aux-split-when-negative-2
;; clause.aux-split-when-negative-3
;; clause.aux-split-when-negative-4
;; clause.aux-split-when-positive-1
;; clause.aux-split-when-positive-2
;; clause.aux-split-when-positive-3
;; clause.aux-split-when-positive-4
;; clause.aux-split-when-not-consp)
;; BOZO this does NOT belong here. It's in aux-split-bldr.lisp but it really belongs
;; in utilities/utilities.
(%autoprove len-when-not-consp-of-cdr-cheap)
|