1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "aux-split-support")
(include-book "aux-split")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(defund clause.aux-split-bldr (todo done proofs)
(declare (xargs :guard (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs)))
:verify-guards nil
:measure (clause.split-count-list todo)))
(if (consp todo)
(let ((t1 (car todo)))
(if (clause.negative-termp t1)
(let ((guts (clause.negative-term-guts t1)))
(cond ((clause.negative-termp guts)
(clause.aux-split-double-negate t1 (cdr todo) done
(clause.aux-split-bldr (cons (clause.negative-term-guts guts) (cdr todo))
done proofs)))
((and (logic.functionp guts)
(equal (logic.function-name guts) 'if)
(equal (len (logic.function-args guts)) 3))
(let ((args (logic.function-args guts)))
(let ((a (first args))
(not-a (logic.function 'not (list (first args))))
(not-b (logic.function 'not (list (second args))))
(not-c (logic.function 'not (list (third args))))
(rest (cdr todo)))
(let ((triv1 (clause.aux-split-trivial-branchp not-a not-b rest done))
(triv2 (clause.aux-split-trivial-branchp a not-c rest done)))
(cond ((and triv1 triv2)
(clause.aux-split-negated-if t1 rest done
(clause.aux-split-trivial-branch-bldr not-a not-b rest done)
(clause.aux-split-trivial-branch-bldr a not-c rest done)))
(triv1
(clause.aux-split-negated-if t1 rest done
(clause.aux-split-trivial-branch-bldr not-a not-b rest done)
(clause.aux-split-bldr (cons a (cons not-c rest)) done proofs)))
(triv2
(clause.aux-split-negated-if t1 rest done
(clause.aux-split-bldr (cons not-a (cons not-b rest)) done proofs)
(clause.aux-split-trivial-branch-bldr a not-c rest done)))
(t
(clause.aux-split-negated-if t1 rest done
(clause.aux-split-bldr (cons not-a (cons not-b rest)) done proofs)
(clause.aux-split-bldr (cons a (cons not-c rest)) done proofs))))))))
(t
(clause.aux-split-negative-default t1 (cdr todo) done
(clause.aux-split-bldr (cdr todo)
(cons (logic.function 'not (list guts)) done)
proofs)))))
(cond ((and (logic.functionp t1)
(equal (logic.function-name t1) 'if)
(equal (len (logic.function-args t1)) 3))
(let ((args (logic.function-args t1)))
(let ((a (first args))
(not-a (logic.function 'not (list (first args))))
(b (second args))
(c (third args))
(rest (cdr todo)))
(let ((triv1 (clause.aux-split-trivial-branchp not-a b rest done))
(triv2 (clause.aux-split-trivial-branchp a c rest done)))
(cond ((and triv1 triv2)
(clause.aux-split-positive-if t1 rest done
(clause.aux-split-trivial-branch-bldr not-a b rest done)
(clause.aux-split-trivial-branch-bldr a c rest done)))
(triv1
(clause.aux-split-positive-if t1 rest done
(clause.aux-split-trivial-branch-bldr not-a b rest done)
(clause.aux-split-bldr (cons a (cons c rest)) done proofs)))
(triv2
(clause.aux-split-positive-if t1 rest done
(clause.aux-split-bldr (cons not-a (cons b rest)) done proofs)
(clause.aux-split-trivial-branch-bldr a c rest done)))
(t
(clause.aux-split-positive-if t1 rest done
(clause.aux-split-bldr (cons not-a (cons b rest)) done proofs)
(clause.aux-split-bldr (cons a (cons c rest)) done proofs))))))))
(t
(clause.aux-split-positive-default t1 (cdr todo) done
(clause.aux-split-bldr (cdr todo) (cons t1 done) proofs))))))
(logic.find-proof (clause.clause-formula done) proofs)))
(defobligations clause.aux-split-bldr
(clause.aux-split-double-negate
clause.aux-split-negated-if
clause.aux-split-negative-default
clause.aux-split-positive-if
clause.aux-split-positive-default
clause.aux-split-trivial-branch-bldr))
(encapsulate
()
;; Now we can carry out the correctness proof entirely using the
;; clause.aux-split-goal abstraction. Then, we get rid of it in the final
;; conclusion proof, so nobody has to deal with it except us.
(local (in-theory (enable clause.aux-split-bldr
clause.aux-split-goal-when-not-consp-of-todo)))
(defthm lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr
(implies (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs)))
(and (logic.appealp (clause.aux-split-bldr todo done proofs))
(equal (logic.conclusion (clause.aux-split-bldr todo done proofs))
(clause.aux-split-goal todo done))))
:rule-classes nil
:hints(("Goal"
:induct (clause.aux-split-bldr todo done proofs)
:expand (clause.aux-split todo done))))
(defthm forcing-logic.appealp-of-clause.aux-split-bldr
(implies (force (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs))))
(equal (logic.appealp (clause.aux-split-bldr todo done proofs))
t))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr)))))
;; We want to keep working with clause.aux-split-goal, for now.
(defthmd lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr
(implies (force (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs))))
(equal (logic.conclusion (clause.aux-split-bldr todo done proofs))
(clause.aux-split-goal todo done)))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr)))))
(verify-guards clause.aux-split-bldr
:hints(("Goal"
:in-theory (enable lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr)
:expand (clause.aux-split todo done)
)))
(defthm@ forcing-logic.proofp-of-clause.aux-split-bldr
(implies (force (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs))
;; ---
(logic.term-list-atblp todo atbl)
(logic.term-list-atblp done atbl)
(logic.proof-listp proofs axioms thms atbl)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3)
(@obligations clause.aux-split-bldr)
))
(equal (logic.proofp (clause.aux-split-bldr todo done proofs) axioms thms atbl)
t))
:hints(("Goal"
:induct (clause.aux-split-bldr todo done proofs)
:in-theory (enable lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr)
:expand (clause.aux-split todo done)
)))
(defthm forcing-logic.conclusion-of-clause.aux-split-bldr
(implies (force (and (logic.term-listp todo)
(logic.term-listp done)
(or (consp todo) (consp done))
(logic.appeal-listp proofs)
(subsetp (clause.clause-list-formulas (clause.aux-split todo done))
(logic.strip-conclusions proofs))))
(equal (logic.conclusion (clause.aux-split-bldr todo done proofs))
(cond ((and (consp todo)
(consp done))
(logic.por (clause.clause-formula todo)
(clause.clause-formula done)))
((consp todo)
(clause.clause-formula todo))
(t
(clause.clause-formula done)))))
:hints(("Goal"
:in-theory (enable clause.aux-split-goal)
:use ((:instance lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr))))))
(defund clause.simple-split-bldr (clause proofs)
(declare (xargs :guard (and (logic.term-listp clause)
(consp clause)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (clause.simple-split clause))
(logic.strip-conclusions proofs)))
:guard-hints (("Goal" :in-theory (enable clause.simple-split)))))
(clause.aux-split-bldr clause nil proofs))
(defobligations clause.simple-split-bldr
(clause.aux-split-bldr))
(defthm forcing-logic.appealp-of-clause.simple-split-bldr
(implies (force (and (logic.term-listp clause)
(consp clause)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (clause.simple-split clause))
(logic.strip-conclusions proofs))))
(equal (logic.appealp (clause.simple-split-bldr clause proofs))
t))
:hints(("Goal" :in-theory (enable clause.simple-split
clause.simple-split-bldr))))
(defthm forcing-logic.conclusion-of-clause.simple-split-bldr
(implies (force (and (logic.term-listp clause)
(consp clause)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (clause.simple-split clause))
(logic.strip-conclusions proofs))))
(equal (logic.conclusion (clause.simple-split-bldr clause proofs))
(clause.clause-formula clause)))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :in-theory (enable clause.simple-split
clause.simple-split-bldr))))
(defthm@ forcing-logic.proofp-of-clause.simple-split-bldr
(implies (force (and (logic.term-listp clause)
(consp clause)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (clause.simple-split clause))
(logic.strip-conclusions proofs))
;; ---
(logic.term-list-atblp clause atbl)
(logic.proof-listp proofs axioms thms atbl)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3)
(@obligations clause.simple-split-bldr)
))
(equal (logic.proofp (clause.simple-split-bldr clause proofs) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable clause.simple-split
clause.simple-split-bldr))))
(defund clause.simple-split-bldr-okp (x atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.arity-tablep atbl))))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
;; Extras holds the input clause to split.
(and (equal method 'clause.simple-split-bldr)
(logic.term-listp extras)
(logic.term-list-atblp extras atbl)
(consp extras)
(equal (clause.clause-list-formulas (clause.simple-split extras))
(logic.strip-conclusions subproofs))
(equal conclusion
(clause.clause-formula extras)))))
(defund clause.simple-split-bldr-high (clause proofs)
(declare (xargs :guard (and (logic.term-listp clause)
(consp clause)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (clause.simple-split clause))
(logic.strip-conclusions proofs)))))
(logic.appeal 'clause.simple-split-bldr
(clause.clause-formula clause)
(list-fix proofs)
clause))
(defobligations clause.simple-split-bldr-okp
(clause.simple-split-bldr))
(encapsulate
()
(local (in-theory (enable clause.simple-split-bldr-okp)))
(defthm booleanp-of-clause.simple-split-bldr-okp
(equal (booleanp (clause.simple-split-bldr-okp x atbl))
t))
(defthm clause.simple-split-bldr-okp-of-logic.appeal-identity
(equal (clause.simple-split-bldr-okp (logic.appeal-identity x) atbl)
(clause.simple-split-bldr-okp x atbl)))
(defthmd lemma-1-for-soundness-of-clause.simple-split-bldr-okp
(implies (and (clause.simple-split-bldr-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.conclusion
(clause.simple-split-bldr (logic.extras x)
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))
(logic.conclusion x))))
(defthmd@ lemma-2-for-soundness-of-clause.simple-split-bldr-okp
(implies (and (clause.simple-split-bldr-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations clause.simple-split-bldr-okp)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3))
(equal (logic.proofp
(clause.simple-split-bldr (logic.extras x)
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl))
axioms thms atbl)
t)))
(defthm@ forcing-soundness-of-clause.simple-split-bldr-okp
(implies (and (clause.simple-split-bldr-okp x atbl)
(force (and (logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations clause.simple-split-bldr-okp)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3)
)))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints (("Goal"
:in-theory (enable lemma-1-for-soundness-of-clause.simple-split-bldr-okp
lemma-2-for-soundness-of-clause.simple-split-bldr-okp)
:use ((:instance forcing-logic.provablep-when-logic.proofp
(x (clause.simple-split-bldr (logic.extras x)
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))))))
|