File: functional-axiom.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (136 lines) | stat: -rw-r--r-- 6,142 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "proofp")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)


(defund logic.functional-axiom (fn ti si)
  ;; Create the functional axiom instance for fn, ti, and si.
  (declare (xargs :guard (and (logic.function-namep fn)
                              (logic.term-listp ti)
                              (logic.term-listp si)
                              (equal (len ti) (len si)))))
  (logic.disjoin-formulas (fast-app (logic.negate-formulas (logic.pequal-list ti si))
                                    (list (logic.pequal (logic.function fn (list-fix ti))
                                                        (logic.function fn (list-fix si)))))))

(defthm forcing-logic.formulap-of-logic.functional-axiom
  (implies (force (and (logic.function-namep fn)
                       (equal (len ti) (len si))
                       (logic.term-listp ti)
                       (logic.term-listp si)))
           (equal (logic.formulap (logic.functional-axiom fn ti si))
                  t))
  :hints(("Goal" :in-theory (enable logic.functional-axiom))))

(defthm forcing-logic.formula-atblp-of-logic.functional-axiom
  (implies (force (and (logic.function-namep fn)
                       (logic.term-list-atblp ti atbl)
                       (logic.term-list-atblp si atbl)
                       (equal (cdr (lookup fn atbl)) (len ti))
                       (equal (len ti) (len si))))
           (equal (logic.formula-atblp (logic.functional-axiom fn ti si) atbl)
                  t))
  :hints(("Goal" :in-theory (enable logic.functional-axiom))))



;; We introduce two intermediate functions to bridge the gap between our axiom
;; generator and the checker in proofp.

(defund logic.functional-axiom-alt1 (fn ti si tacc sacc)
  (declare (xargs :verify-guards nil))
  (if (and (consp ti)
           (consp si))
      (logic.por (logic.pnot (logic.pequal (car ti) (car si)))
                 (logic.functional-axiom-alt1 fn (cdr ti) (cdr si) (cons (car ti) tacc) (cons (car si) sacc)))
    (logic.pequal (logic.function fn (rev tacc))
                  (logic.function fn (rev sacc)))))

(defthm logic.check-functional-axiom-of-logic.functional-axiom-alt1
  (implies (and (logic.function-namep fn)
                (equal (len ti) (len si)))
           (equal (logic.check-functional-axiom (logic.functional-axiom-alt1 fn ti si tacc sacc) tacc sacc)
                  t))
  :hints(("Goal"
          :in-theory (enable logic.check-functional-axiom
                             logic.functional-axiom-alt1)
          :induct (logic.functional-axiom-alt1 fn ti si tacc sacc))))

(defund logic.functional-axiom-alt2 (fn ti si tacc sacc)
  (declare (xargs :verify-guards nil))
  (logic.disjoin-formulas
   (app (logic.negate-formulas (logic.pequal-list ti si))
        (list (logic.pequal (logic.function fn (rev (revappend ti tacc)))
                            (logic.function fn (rev (revappend si sacc))))))))

(encapsulate
 ()
 (local (ACL2::allow-fertilize t))
 (defthm logic.functional-axiom-alt1/alt2-equivalence
   (implies (and (logic.function-namep fn)
                 (equal (len ti) (len si))
                 (true-listp tacc)
                 (true-listp sacc))
            (equal (logic.functional-axiom-alt1 fn ti si tacc sacc)
                   (logic.functional-axiom-alt2 fn ti si tacc sacc)))
   :hints(("Goal"
           :in-theory (e/d (logic.functional-axiom-alt2
                            logic.functional-axiom-alt1)
                           (forcing-logic.formulap-of-logic.pequal
                            forcing-logic.formulap-of-logic.pnot
                            forcing-equal-of-logic.por-rewrite-two
                            forcing-equal-of-logic.por-rewrite))
           :induct (logic.functional-axiom-alt1 fn ti si tacc sacc)))))

(defthm logic.functional-axiom-alt2/main-equivalence
  (implies (and (logic.function-namep fn)
                (equal (len ti) (len si)))
           (equal (logic.functional-axiom-alt2 fn ti si nil nil)
                  (logic.functional-axiom fn ti si)))
  :hints(("Goal" :in-theory (enable logic.functional-axiom-alt2
                                    logic.functional-axiom))))

(defthm forcing-logic.check-functional-axiom-of-logic.functional-axiom
   (implies (force (and (logic.function-namep fn)
                        (equal (len ti) (len si))))
            (equal (logic.check-functional-axiom (logic.functional-axiom fn ti si) nil nil)
                   t))
   :hints(("Goal"
           :use ((:instance logic.check-functional-axiom-of-logic.functional-axiom-alt1
                            (tacc nil)
                            (sacc nil))))))