1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "proofp")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(defund logic.functional-axiom (fn ti si)
;; Create the functional axiom instance for fn, ti, and si.
(declare (xargs :guard (and (logic.function-namep fn)
(logic.term-listp ti)
(logic.term-listp si)
(equal (len ti) (len si)))))
(logic.disjoin-formulas (fast-app (logic.negate-formulas (logic.pequal-list ti si))
(list (logic.pequal (logic.function fn (list-fix ti))
(logic.function fn (list-fix si)))))))
(defthm forcing-logic.formulap-of-logic.functional-axiom
(implies (force (and (logic.function-namep fn)
(equal (len ti) (len si))
(logic.term-listp ti)
(logic.term-listp si)))
(equal (logic.formulap (logic.functional-axiom fn ti si))
t))
:hints(("Goal" :in-theory (enable logic.functional-axiom))))
(defthm forcing-logic.formula-atblp-of-logic.functional-axiom
(implies (force (and (logic.function-namep fn)
(logic.term-list-atblp ti atbl)
(logic.term-list-atblp si atbl)
(equal (cdr (lookup fn atbl)) (len ti))
(equal (len ti) (len si))))
(equal (logic.formula-atblp (logic.functional-axiom fn ti si) atbl)
t))
:hints(("Goal" :in-theory (enable logic.functional-axiom))))
;; We introduce two intermediate functions to bridge the gap between our axiom
;; generator and the checker in proofp.
(defund logic.functional-axiom-alt1 (fn ti si tacc sacc)
(declare (xargs :verify-guards nil))
(if (and (consp ti)
(consp si))
(logic.por (logic.pnot (logic.pequal (car ti) (car si)))
(logic.functional-axiom-alt1 fn (cdr ti) (cdr si) (cons (car ti) tacc) (cons (car si) sacc)))
(logic.pequal (logic.function fn (rev tacc))
(logic.function fn (rev sacc)))))
(defthm logic.check-functional-axiom-of-logic.functional-axiom-alt1
(implies (and (logic.function-namep fn)
(equal (len ti) (len si)))
(equal (logic.check-functional-axiom (logic.functional-axiom-alt1 fn ti si tacc sacc) tacc sacc)
t))
:hints(("Goal"
:in-theory (enable logic.check-functional-axiom
logic.functional-axiom-alt1)
:induct (logic.functional-axiom-alt1 fn ti si tacc sacc))))
(defund logic.functional-axiom-alt2 (fn ti si tacc sacc)
(declare (xargs :verify-guards nil))
(logic.disjoin-formulas
(app (logic.negate-formulas (logic.pequal-list ti si))
(list (logic.pequal (logic.function fn (rev (revappend ti tacc)))
(logic.function fn (rev (revappend si sacc))))))))
(encapsulate
()
(local (ACL2::allow-fertilize t))
(defthm logic.functional-axiom-alt1/alt2-equivalence
(implies (and (logic.function-namep fn)
(equal (len ti) (len si))
(true-listp tacc)
(true-listp sacc))
(equal (logic.functional-axiom-alt1 fn ti si tacc sacc)
(logic.functional-axiom-alt2 fn ti si tacc sacc)))
:hints(("Goal"
:in-theory (e/d (logic.functional-axiom-alt2
logic.functional-axiom-alt1)
(forcing-logic.formulap-of-logic.pequal
forcing-logic.formulap-of-logic.pnot
forcing-equal-of-logic.por-rewrite-two
forcing-equal-of-logic.por-rewrite))
:induct (logic.functional-axiom-alt1 fn ti si tacc sacc)))))
(defthm logic.functional-axiom-alt2/main-equivalence
(implies (and (logic.function-namep fn)
(equal (len ti) (len si)))
(equal (logic.functional-axiom-alt2 fn ti si nil nil)
(logic.functional-axiom fn ti si)))
:hints(("Goal" :in-theory (enable logic.functional-axiom-alt2
logic.functional-axiom))))
(defthm forcing-logic.check-functional-axiom-of-logic.functional-axiom
(implies (force (and (logic.function-namep fn)
(equal (len ti) (len si))))
(equal (logic.check-functional-axiom (logic.functional-axiom fn ti si) nil nil)
t))
:hints(("Goal"
:use ((:instance logic.check-functional-axiom-of-logic.functional-axiom-alt1
(tacc nil)
(sacc nil))))))
|