1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "find-proof")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
; Proof Replacement.
;
; A basic goal of this file is to be able to support reasoning of the form,
;
; Given: BLDR is sound as long as FOO is a theorem.
; Given: A proof of FOO.
; Conclude: BLDR's conclusions are sound even when FOO is not a theorem.
;
; To carry out this sort of thing, we introduce a proof-replacing function,
; which walks through an appeal and replaces any conclusions of some form
; with a new proof. Then, we see that
;
; Replace(BLDR's output, Proof of FOO)
;
; Is a proof of BLDR's output which is true even without having FOO as a
; theorem of the history.
(defund logic.flag-replace-proofs (flag x proofs)
(declare (xargs :guard (and (if (equal flag 'proof)
(logic.appealp x)
(and (equal flag 'list)
(logic.appeal-listp x)))
(logic.appeal-listp proofs))
:measure (two-nats-measure (rank x) (if (equal flag 'proof) 1 0))
:verify-guards nil))
(if (equal flag 'proof)
(or (logic.find-proof (logic.conclusion x) proofs)
(logic.appeal (logic.method x)
(logic.conclusion x)
(logic.flag-replace-proofs 'list (logic.subproofs x) proofs)
(logic.extras x)))
(if (consp x)
(cons (logic.flag-replace-proofs 'proof (car x) proofs)
(logic.flag-replace-proofs 'list (cdr x) proofs))
nil)))
(defund logic.replace-proofs (x proofs)
(declare (xargs :guard (and (logic.appealp x)
(logic.appeal-listp proofs))
:verify-guards nil))
(logic.flag-replace-proofs 'proof x proofs))
(defund logic.replace-proofs-list (x proofs)
(declare (xargs :guard (and (logic.appeal-listp x)
(logic.appeal-listp proofs))
:verify-guards nil))
(logic.flag-replace-proofs 'list x proofs))
(defthmd definition-of-logic.replace-proofs
(equal (logic.replace-proofs x proofs)
(or (logic.find-proof (logic.conclusion x) proofs)
(logic.appeal (logic.method x)
(logic.conclusion x)
(logic.replace-proofs-list (logic.subproofs x) proofs)
(logic.extras x))))
:rule-classes :definition
:hints(("Goal" :in-theory (enable logic.flag-replace-proofs
logic.replace-proofs
logic.replace-proofs-list))))
(defthmd definition-of-logic.replace-proofs-list
(equal (logic.replace-proofs-list x proofs)
(if (consp x)
(cons (logic.replace-proofs (car x) proofs)
(logic.replace-proofs-list (cdr x) proofs))
nil))
:rule-classes :definition
:hints(("Goal"
:in-theory (enable logic.flag-replace-proofs
logic.replace-proofs
logic.replace-proofs-list)
:expand (logic.flag-replace-proofs 'list x proofs))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition logic.replace-proofs))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition logic.replace-proofs-list))))
(defthm logic.replace-proofs-list-when-not-consp
(implies (not (consp x))
(equal (logic.replace-proofs-list x proofs)
nil))
:hints(("Goal" :in-theory (enable definition-of-logic.replace-proofs-list))))
(defthm logic.replace-proofs-list-of-cons
(equal (logic.replace-proofs-list (cons a x) proofs)
(cons (logic.replace-proofs a proofs)
(logic.replace-proofs-list x proofs)))
:hints(("Goal" :in-theory (enable definition-of-logic.replace-proofs-list))))
(defprojection
:list (logic.replace-proofs-list x proofs)
:element (logic.replace-proofs x proofs)
:already-definedp t)
(defthms-flag
:shared-hyp (force (logic.appeal-listp proofs))
:thms ((proof logic.appealp-of-logic.replace-proofs
(implies (force (logic.appealp x))
(equal (logic.appealp (logic.replace-proofs x proofs))
t)))
(t logic.appeal-listp-of-logic.replace-proofs-list
(implies (force (logic.appeal-listp x))
(equal (logic.appeal-listp (logic.replace-proofs-list x proofs))
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (e/d (definition-of-logic.replace-proofs)
((ACL2::force))))))
(defthms-flag
:shared-hyp (force (logic.appeal-listp proofs))
:thms ((proof logic.conclusion-of-logic.replace-proofs
(implies (force (logic.appealp x))
(equal (logic.conclusion (logic.replace-proofs x proofs))
(logic.conclusion x))))
(t logic.strip-conclusions-of-logic.replace-proofs-list
(implies (force (logic.appeal-listp x))
(equal (logic.strip-conclusions (logic.replace-proofs-list x proofs))
(logic.strip-conclusions x)))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (e/d (definition-of-logic.replace-proofs)
((ACL2::force))))))
(defthmd lemma-1-for-logic.proofp-of-logic.replace-proofs
(implies (and (not (equal (logic.method x) 'axiom))
(not (equal (logic.method x) 'theorem)))
(equal
(logic.appeal-step-okp x
(difference axioms remove)
(difference thms remove)
atbl)
(logic.appeal-step-okp x axioms thms atbl)))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp))))
(defthmd lemma-2-for-logic.proofp-of-logic.replace-proofs
(implies (and (or (equal (logic.method x) 'axiom)
(equal (logic.method x) 'theorem))
(not (memberp (logic.conclusion x) remove)))
(equal
(logic.appeal-step-okp x
(difference axioms remove)
(difference thms remove)
atbl)
(logic.appeal-step-okp x axioms thms atbl)))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp
logic.axiom-okp
logic.theorem-okp))))
(defthmd lemma-3-for-logic.proofp-of-logic.replace-proofs
(implies (not (memberp (logic.conclusion x) remove))
(equal (logic.appeal-step-okp x
(difference axioms remove)
(difference thms remove)
atbl)
(logic.appeal-step-okp x axioms thms atbl)))
:hints(("Goal" :use ((:instance lemma-1-for-logic.proofp-of-logic.replace-proofs)
(:instance lemma-2-for-logic.proofp-of-logic.replace-proofs)))))
(defthmd lemma-4-for-logic.proofp-of-logic.replace-proofs
(implies (and (logic.proof-listp (logic.replace-proofs-list (logic.subproofs x) proofs)
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl)
(logic.appeal-listp proofs)
(logic.proof-listp proofs
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl)
(logic.appealp x)
(logic.appeal-step-okp x axioms thms atbl)
(logic.proof-listp (logic.subproofs x) axioms thms atbl)
(not (logic.find-proof (logic.conclusion x) proofs)))
(logic.proofp (logic.appeal (logic.method x)
(logic.conclusion x)
(logic.replace-proofs-list (logic.subproofs x)
proofs)
(logic.extras x))
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl))
:hints(("Goal"
:in-theory (enable definition-of-logic.proofp)
:use ((:instance lemma-appeal-step-for-forcing-logic.provablep-when-logic.subproofs-provable
(new-subproofs (logic.replace-proofs-list (logic.subproofs x) proofs)))
(:instance lemma-3-for-logic.proofp-of-logic.replace-proofs
(x (logic.appeal (logic.method x)
(logic.conclusion x)
(logic.replace-proofs-list (logic.subproofs x) proofs)
(logic.extras x)))
(remove (logic.strip-conclusions proofs)))))))
(defthms-flag
:shared-hyp (and (force (logic.appeal-listp proofs))
(force (logic.proof-listp proofs
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl)))
:thms ((proof logic.proofp-of-logic.replace-proofs
(implies (and (force (logic.appealp x))
(force (logic.proofp x axioms thms atbl)))
(equal (logic.proofp (logic.replace-proofs x proofs)
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl)
t)))
(t logic.proof-listp-of-logic.replace-proofs-list
(implies (and (force (logic.appeal-listp x))
(force (logic.proof-listp x axioms thms atbl)))
(equal (logic.proof-listp (logic.replace-proofs-list x proofs)
(difference axioms (logic.strip-conclusions proofs))
(difference thms (logic.strip-conclusions proofs))
atbl)
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-logic.replace-proofs
definition-of-logic.proofp
lemma-4-for-logic.proofp-of-logic.replace-proofs))))
(defthm logic.appeal-step-okp-in-larger-axiom-set
(implies (and (subsetp axioms more-axioms)
(logic.appeal-step-okp x axioms thms atbl))
(equal (logic.appeal-step-okp x more-axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp
logic.axiom-okp))))
(defthms-flag
:shared-hyp (subsetp axioms more-axioms)
:thms ((proof logic.proofp-in-larger-axiom-set
(implies (logic.proofp x axioms thms atbl)
(equal (logic.proofp x more-axioms thms atbl)
t)))
(t logic.proof-listp-in-larger-axiom-set
(implies (logic.proof-listp x axioms thms atbl)
(equal (logic.proof-listp x more-axioms thms atbl)
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-logic.proofp))))
(defthm logic-provablep-in-larger-axiom-set
(implies (and (subsetp axioms more-axioms)
(logic.provablep x axioms thms atbl))
(equal (logic.provablep x more-axioms thms atbl)
t))
:hints(("Goal" :in-theory (e/d (logic.provablep)
((ACL2::force))))))
(defthm logic.appeal-step-okp-in-larger-theorem-set
(implies (and (subsetp thms more-thms)
(logic.appeal-step-okp x axioms thms atbl))
(equal (logic.appeal-step-okp x axioms more-thms atbl)
t))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp
logic.theorem-okp))))
(defthms-flag
:shared-hyp (subsetp thms more-thms)
:thms ((proof logic.proofp-in-larger-theorem-set
(implies (logic.proofp x axioms thms atbl)
(equal (logic.proofp x axioms more-thms atbl)
t)))
(t logic.proof-listp-in-larger-theorem-set
(implies (logic.proof-listp x axioms thms atbl)
(equal (logic.proof-listp x axioms more-thms atbl)
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-logic.proofp))))
(defthm logic-provablep-in-larger-theorem-set
(implies (and (subsetp thms more-thms)
(logic.provablep x axioms thms atbl))
(equal (logic.provablep x axioms thms atbl)
t))
:hints(("Goal" :in-theory (e/d (logic.provablep)
((ACL2::force))))))
|