File: sat-drat-claim-2.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (207 lines) | stat: -rw-r--r-- 8,968 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
; Copyright (C) 2016, Regents of the University of Texas
; Marijn Heule, Warren A. Hunt, Jr., and Matt Kaufmann
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; See soundness.lisp.  Here we prove a key lemma in support of that book.

(in-package "LRAT")

(include-book "satisfiable-add-proof-clause-base")

(defthm truth-remove-irrelevant-lit-1
  (implies (and (equal (evaluate-clause clause assignment)
                       t)
                (not (member lit clause)))
           (equal (evaluate-clause clause
                                   (remove-literal lit assignment))
                  t)))

(defthm truth-remove-irrelevant-lit-cons
  (implies (and (equal (evaluate-clause clause assignment)
                       t)
                (not (member lit clause)))
           (equal (evaluate-clause clause
                                   (cons lit assignment))
                  t)))

(defthm truth-remove-irrelevant-lit-2
  (implies (and (equal (evaluate-clause clause assignment)
                       t)
                (not (member lit clause))
                (not (member (negate lit) clause)))
           (equal (evaluate-clause clause
                                   (flip-literal lit assignment))
                  t))
  :hints (("Goal" :in-theory (enable flip-literal))))

(defthm truth-remove-irrelevant-lit-3
  (implies (equal (evaluate-clause (remove-literal lit clause)
                                   assignment)
                  t)
           (equal (evaluate-clause clause assignment)
                  t)))

(defthm subsetp-preserves-assignment
  (implies (and (subsetp a2 a1)
                (clause-or-assignment-p a1)
                (literal-listp a2)
                (unique-literalsp a2))
           (clause-or-assignment-p a2))
  :hints (("Goal" :in-theory (enable clause-or-assignment-p))))

(defthm formula-truep-implies-evaluate-clause-t

; It remains to prove Claim 2.  Since A |= F, A |= D.

; This is redundant here (proved in unit-propagation-implies-unsat.lisp).

  (implies
   (and (formula-truep formula assignment)
        (hons-assoc-equal index formula)
        (not (deleted-clause-p (cdr (hons-assoc-equal index formula)))))
   (equal (evaluate-clause (cdr (hons-assoc-equal index formula))
                           assignment)
          t)))

(defthm subsetp-cons-remove-literal
  (subsetp a (cons lit (remove-literal lit a))))

(defthm sat-drat-claim-2-1
  (implies (and (not (member (negate (car (access add-step entry :clause)))
                             (cdr (hons-assoc-equal index formula))))
                (formula-p formula)
                (solution-p assignment formula)
                (hons-assoc-equal index formula)
                (not (deleted-clause-p
                      (cdr (hons-assoc-equal index formula)))))
           (equal (evaluate-clause
                   (cdr (hons-assoc-equal index formula))
                   (flip-literal (car (access add-step entry :clause))
                                 assignment))
                  t))
  :hints (("Goal"
           :in-theory (enable flip-literal)
           :restrict ((truth-monotone-clause
                       ((a1 (remove-literal (- (cadr (car entry)))
                                            assignment)))))))
  :rule-classes nil)

(defthm clause-or-assignmentp-cdr-hons-assoc-equal-for-formula
  (let ((clause (cdr (hons-assoc-equal index formula))))
    (implies (and (formula-p formula)
                  (not (deleted-clause-p clause)))
             (clause-or-assignment-p clause))))

(defthm sat-drat-claim-2-2-1
  (implies (and (member (negate (car (access add-step entry :clause)))
                        (cdr (hons-assoc-equal index formula)))
                (equal (evaluate-clause
                        (remove-literal
                         (negate (car (access add-step entry :clause)))
                         (cdr (hons-assoc-equal index formula)))
                        assignment)
                       t)
                (formula-p formula)
                (not (deleted-clause-p
                      (cdr (hons-assoc-equal index formula)))))
           (equal (evaluate-clause
                   (remove-literal
                    (negate (car (access add-step entry :clause)))
                    (cdr (hons-assoc-equal index formula)))
                   (flip-literal (car (access add-step entry :clause))
                                 assignment))
                  t))
  :instructions (:bash (:dv 1)
                       (:then (:rewrite truth-remove-irrelevant-lit-2)
                              :prove))
  :rule-classes nil)

(defthm sat-drat-claim-2-2
  (implies (and (member (negate (car (access add-step entry :clause)))
                        (cdr (hons-assoc-equal index formula)))
                (equal (evaluate-clause
                        (remove-literal
                         (negate (car (access add-step entry :clause)))
                         (cdr (hons-assoc-equal index formula)))
                        assignment)
                       t)
                (formula-p formula))
           (equal (evaluate-clause
                   (cdr (hons-assoc-equal index formula))
                   (flip-literal (car (access add-step entry :clause))
                                 assignment))
                  t))
  :hints (("Goal" :use sat-drat-claim-2-2-1))
  :rule-classes nil)

(encapsulate
  ()
  (local (include-book "sat-drat-claim-2-3"))
  (set-enforce-redundancy t)
  (defthm sat-drat-claim-2-3
    (mv-let (ncls ndel new-formula)
      (verify-clause formula entry ncls ndel)
      (declare (ignore ndel))
      (implies (and (member (negate (car (access add-step entry :clause)))
                            (cdr (hons-assoc-equal index formula)))
                    (not (equal (evaluate-clause
                                 (remove-literal
                                  (negate (car (access add-step entry :clause)))
                                  (cdr (hons-assoc-equal index formula)))
                                 assignment)
                                t))
                    ncls
                    (proof-entry-p entry)
                    (not (proof-entry-deletion-p entry))
                    (formula-p formula)
                    (solution-p assignment formula)
                    (not (equal (unit-propagation formula
                                                  (access add-step entry
                                                          :rup-indices)
                                                  (negate-clause-or-assignment
                                                   (access add-step entry
                                                           :clause)))
                                t))
                    (not (satisfiable (add-proof-clause
                                       (access add-step entry :index)
                                       (access add-step entry :clause)
                                       new-formula))))
               (equal (evaluate-clause
                       (cdr (hons-assoc-equal index formula))
                       (flip-literal (car (access add-step entry :clause))
                                     assignment))
                      t)))
    :rule-classes nil))

(defthm sat-drat-claim-2
  (mv-let (ncls ndel new-formula)
    (verify-clause formula entry ncls ndel)
    (declare (ignore ndel))
    (implies (and ncls
                  (proof-entry-p entry)
                  (not (proof-entry-deletion-p entry))
                  (formula-p formula)
                  (solution-p assignment formula)
                  (not (equal (unit-propagation formula
                                                (access add-step entry
                                                        :rup-indices)
                                                (negate-clause-or-assignment
                                                 (access add-step entry
                                                         :clause)))
                              t))
                  (not (satisfiable (add-proof-clause
                                     (access add-step entry :index)
                                     (access add-step entry :clause)
                                     new-formula)))
                  (hons-assoc-equal index formula)
                  (not (equal (cdr (hons-assoc-equal index formula))
                              *deleted-clause*)))
             (equal (evaluate-clause
                     (cdr (hons-assoc-equal index formula))
                     (flip-literal (car (access add-step entry :clause))
                                   assignment))
                    t)))
  :hints (("Goal"
           :in-theory (theory 'minimal-theory)
           :use (sat-drat-claim-2-1 sat-drat-claim-2-2 sat-drat-claim-2-3)))
  :rule-classes nil)