1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
;; Copyright (C) 2015, University of British Columbia
;; Written (originally) by Yan Peng (August 2nd 2016)
;;
;; License: A 3-clause BSD license.
;; See the LICENSE file distributed with ACL2
(in-package "SMT")
(include-book "../top")
(include-book "centaur/sv/tutorial/support" :dir :system)
;; def-saved-event is a wrapper that is used by the documentation system,
;; and can be ignored by the reader.
;; Check the book centaur/sv/tutorial/support.lisp for detailed explanation.
(include-book "basictypes")
; cert_param: (uses-smtlink)
(value-triple (tshell-ensure))
(add-default-hints '((SMT::SMT-computed-hint clause)))
;; Example 1
(def-saved-event x^2-y^2
(defun x^2-y^2 (x y) (- (* x x) (* y y))))
(def-saved-event x^2+y^2
(defun x^2+y^2 (x y) (+ (* x x) (* y y))))
(def-saved-event poly-ineq
(defthm poly-ineq-example
(implies (and (real/rationalp x) (real/rationalp y)
(<= (+ (* (/ 9 8) x x) (* y y)) 1)
(<= (x^2-y^2 x y) 1))
(< y (- (* 3 (- x (/ 17 8)) (- x (/ 17 8))) 3)))
:hints(("Goal"
:smtlink nil)))
)
(deftutorial Example-1
:parents (Tutorial)
:short "Example 1: the basics"
:long "<h3>Example 1</h3>
<p>Prerequisite read for this tutorial example is @(tsee tutorial).</p>
<p>The first example is a basic polynomial inequality. Let's say we want to
prove below theorem:</p>
<box>
<p>
<b><color rgb='#323cbe'>Theorem 1.</color></b>
@($\\forall x\\in R$) and @($\\forall y \\in R$), if @($ \\frac{9x^2}{8}+y^2 \\le 1$) and
@($ x^2-y^2 \\le 1$), then @($ y < 3(x-\\frac{17}{8})^2 - 3$).
</p>
</box>
<p>Suppose we've defined a function called @('x^2-y^2') like below:</p>
@(`(:code ($ x^2-y^2))`)
<p>We define our theorem as:</p>
@(`(:code ($ poly-ineq))`)
<p>Smtlink should just prove this inequality without any problem.</p>
<p>Like is shown in the example, @(':smtlink') can be provided as a hint in the
standard @(see acl2::hints) in ACL2. In the most basic cases where Smtlink
handles everything, no @(see smt-hint) are required to be provided, Hence
@(':smtlink nil').</p>
<p>The output of this defthm should look similar to:</p>
@({
Using clause-processor Smtlink
Goal'
Goal''
SMT-goal-generator=>Expanding ... X^2-Y^2
Subgoal 2
Subgoal 2.2
Subgoal 2.2'
Using default SMT-trusted-cp...
; SMT solver: `python /tmp/py_file/smtlink.w59zR`: 0.52 sec, 7,904 bytes
Proved!
Subgoal 2.2''
Subgoal 2.1
Subgoal 2.1'
Subgoal 1
Subgoal 1'
Summary
Form: ( DEFTHM POLY-INEQ-EXAMPLE ...)
Rules: ((:DEFINITION HIDE)
(:DEFINITION HINT-PLEASE)
(:DEFINITION NOT)
(:DEFINITION TYPE-HYP)
(:DEFINITION X^2-Y^2)
(:EXECUTABLE-COUNTERPART BINARY-*)
(:EXECUTABLE-COUNTERPART ACL2::BOOLEAN-LIST-FIX$INLINE)
(:EXECUTABLE-COUNTERPART CAR)
(:EXECUTABLE-COUNTERPART CDR)
(:EXECUTABLE-COUNTERPART CONS)
(:EXECUTABLE-COUNTERPART CONSP)
(:EXECUTABLE-COUNTERPART UNARY--)
(:EXECUTABLE-COUNTERPART UNARY-/)
(:FAKE-RUNE-FOR-TYPE-SET NIL)
(:REWRITE ASSOCIATIVITY-OF-+)
(:REWRITE ACL2::COMMUTATIVITY-2-OF-+)
(:REWRITE COMMUTATIVITY-OF-*)
(:REWRITE COMMUTATIVITY-OF-+)
(:REWRITE DISTRIBUTIVITY)
(:TYPE-PRESCRIPTION NONNEGATIVE-PRODUCT))
Hint-events: ((:CLAUSE-PROCESSOR ADD-HYPO-CP)
(:CLAUSE-PROCESSOR EXPAND-CP-FN)
(:CLAUSE-PROCESSOR PROCESS-HINT)
(:CLAUSE-PROCESSOR SMT-TRUSTED-CP)
(:CLAUSE-PROCESSOR TYPE-EXTRACT-FN)
(:CLAUSE-PROCESSOR UNINTERPRETED-FN-CP))
Time: 0.60 seconds (prove: 0.60, print: 0.00, other: 0.00)
Prover steps counted: 1440
POLY-INEQ-EXAMPLE
})
<p>Smtlink is a sequence of clause processors controlled by a computed hint.
Calling smtlink from the @(':hints') put the theorem clause though a clause
processor looking for syntax errors in the @(see smt-hint). If nothing wrong,
it will generate a term to be recognized by the computed-hint
@('SMT::SMT-computed-hint'). The computed-hint then installs the next-to-be
clause processor to work on the clause. The next is the verified clause
processor for adding hypotheses. After that is the verified clause processor
for function expansion.</p>
<p>@('SMT-goal-generator=>Expanding ... X^2-Y^2') shows function expansion is
being conducted. </p>
<p>In this example, several subgoals are generated as a result of this clause
processor. The first subgoal is the goal to be sent to the trusted clause
processor that transliterates the term into the corresponding SMT form and
writes it out to a file. An SMT solver is called upon the file and results are
read back into ACL2. Below are the outputs from this clause processor called
@('SMT-trusted-cp').
</p>
@({
Using default SMT-trusted-cp...
; SMT solver: `python /tmp/py_file/smtlink.w59zR`: 0.52 sec, 7,904 bytes
Proved!
})
<p>The second line tells the user what command is run to execute the SMT
solving. \"Proved!\" indicates the SMT solver has successfully proved the
theorem. When a theorem failed, a possible counter-example might be
provided in the form:</p>
@({
Possible counter-example found: ((X ...) (Y ...))
One can access it through global variable SMT-cex by doing (@ SMT-
cex).
})
<p>Other subgoals are auxiliary clauses generated by the verified
clause-processors. They help ensure the soundness of Smtlink.</p>
")
(def-saved-event smtconf-expt-tutorial
(defun my-smtlink-expt-config ()
(declare (xargs :guard t))
(change-smtlink-config (default-smt-cnf)
:smt-module "RewriteExpt"
:smt-class "to_smt_w_expt")))
(def-saved-event smtconf-expt-defattach-tutorial
(defattach custom-smt-cnf my-smtlink-expt-config))
;; Example 2
(def-saved-event poly-of-expt-example
(encapsulate ()
(local (include-book "arithmetic-5/top" :dir :system))
(defthm poly-of-expt-example
(implies (and (real/rationalp x) (real/rationalp y) (real/rationalp z)
(integerp m) (integerp n)
(< 0 z) (< z 1) (< 0 m) (< m n))
(<= (* 2 (expt z n) x y)
(* (expt z m) (x^2+y^2 x y))))
:hints (("Goal"
:smtlink-custom (:functions ((expt :formals ((r real/rationalp)
(i real/rationalp))
:returns ((ex real/rationalp))
:level 0))
:hypotheses (((< (expt z n) (expt z m)))
((< 0 (expt z m)))
((< 0 (expt z n))))
:int-to-rat t)
)))))
(deftutorial Example-2
:parents (Tutorial)
:short "Example 2: something wild"
:long "<h3>Example 2</h3>
<p>Prerequisite read for this tutorial example is @(tsee tutorial).</p>
<p>Smtlink is extensible, with the user's understanding that the extended part
is not verified and therefore is the user's responsibility to ensure its
soundness. A different trust tag is installed if this customized Smtlink is
used. Such ability makes Smtlink very powerful. Here's an example to show the
usage.</p>
<p>Let's say we want to prove the theorem:</p>
<box>
<p>
<b><color rgb='#323cbe'>Theorem 2.</color></b>
@($\\forall x,y,z\\in R$), and @($\\forall m,n \\in Z$), if @($ 0 \\le z \\le 1$) and
@($ 0 \\le m \\le n $), then @($ 2xy\\cdot z^n \\le (x^2+y^2)z^m$).
</p>
</box>
<p>In @('smtlink/z3_interface/'), file @('RewriteExpt.py') is a Python class
extending from the default class in ACL2_to_Z3.py. One could imaging defining
one's own file that does magical things in the SMT solver. What
@('RewriteExpt.py') does is that it uses basic rewrite lemmas about @('expt')
to help the SMT solver to solve. In order to make Smtlink uses the custom
version instead of the default, one needs to define and attach a new
configuration:</p>
@(`(:code ($ smtconf-expt-tutorial))`)
@(`(:code ($ smtconf-expt-defattach-tutorial))`)
<p>Defining the function @('x^2+y^2')</p>
@(`(:code ($ ||x^2+y^2||))`)
<p>Then define the theorem to prove:</p>
@(`(:code ($ poly-of-expt-example))`)
<p>Notice the @(':hints') keyword used this time is @(':smtlink-custom'). It
allows the customized version of Smtlink to be applied to the current
clause. Take a read in @(see smt-hint) for a detailed description of each
keyword. Here we will only describe what's used in this example.</p>
<p>In the hints, @(':function') tells Smtlink to treat @('expt') as an
uninterpreted function. @(':formals') tells us the input argument types of the
uninterpreted function and @(':returns') tells us the output argument type.
@(':levels') specifies an expansion level of 0, making the function an
uninterpreted function.</p>
<p>@(':hypotheses') provides a list of hypotheses that the user believes to be
true and can help with the proof. The hypotheses will be insert into the
hypotheses when generating the SMT problem. They will be proved correctness
as part of the returned clauses from the verified clause processor. </p>
<p>@(':int-to-rat') tells Smtlink to raise integers to rationals when
translating the clause into a SMT problem. This is because of the limitation in
Z3. Integers mixed with real numbers are hard for Z3. We prove the given
theorem by proving a more general statement in the SMT solver.</p>
<p>Another observation is that, we are including the arithmetic-5 book for
proving the returned auxiliary clauses, which requires arithmetic
reasoning.</p>
")
;; Buggy example
(def-saved-event non-theorem-example
(acl2::must-fail
(defthm non-theorem
(implies (and (real/rationalp x)
(real/rationalp y)
(integerp (/ x y)))
(not (equal y 0)))
:hints(("Goal"
:smtlink nil))
:rule-classes nil)))
(deftutorial Example-3
:parents (Tutorial)
:short "Example 3: defense against evil"
:long "<h3>Example 3</h3>
<p>Prerequisite read for this tutorial example is @(tsee tutorial).</p>
<p>The third evil example is from one of the reviews we get when we first
published our paper in @(see Smtlink). </p>
@(`(:code ($ non-theorem-example))`)
<p>This is an evil theorem because we know below is a theorem in ACL2:</p>
@({
(thm (equal (/ x 0) 0))
})
<p>Therefore if Smtlink falsely prove @('non-theorem'), it will introduce
contradiction into ACL2.</p>
<p>Smtlink fails to prove the @('non-theorem') with error message:</p>
@({
HARD ACL2 ERROR in SMT-TRANSLATOR=>TRANSLATE-FUNCTION: Not a basic
SMT function: INTEGERP
})
<p>This is because ACL2 treats @('integerp')'s as type declarations in Z3. But
here in this theorem, @('(integerp (/ x y))') is a constraint/hypotheses rather
than a type declaration. When ACL2 tried to translate it as a constraint, it
finds out @('integerp') is not a supported function.</p>
")
(define foo ((x real/rationalp))
:returns (rx real/rationalp)
(b* ((x (realfix x)))
(+ (* x x) 1)))
(in-theory (disable (:type-prescription foo)))
(defthm poly-ineq-example-functions
(implies (and (real/rationalp x))
(< 0 (* 2 (foo x))))
:hints(("Goal"
:smtlink
(:functions ((foo :formals ((x real/rationalp))
:returns ((rx real/rationalp))
:level 0))
:hypotheses (((<= 1 (foo x))
:hints (:in-theory (enable foo))))
))))
(def-saved-event fty-deflist-theorem-example
(defthm fty-deflist-theorem
(implies (and (integer-listp l)
(consp (acl2::integer-list-fix l))
(consp (acl2::integer-list-fix (cdr (acl2::integer-list-fix l)))))
(>= (x^2+y^2 (car (acl2::integer-list-fix l))
(car (acl2::integer-list-fix
(cdr (acl2::integer-list-fix l)))))
0))
:hints(("Goal"
:smtlink
(:fty (acl2::integer-list))))
:rule-classes nil))
(acl2::must-fail
(defthm fty-deflist-theorem-fail
(implies (and (integer-listp l)
(consp (acl2::integer-list-fix l))
(consp (acl2::integer-list-fix (cdr (acl2::integer-list-fix l)))))
(>= (x^2+y^2 (car (acl2::integer-list-fix l))
(car (acl2::integer-list-fix
(cdr (acl2::integer-list-fix l)))))
1))
:hints(("Goal"
:smtlink
(:fty (acl2::integer-list))))
:rule-classes nil)
)
(def-saved-event symbol-integer-example
(defalist symbol-integer-alist
:key-type symbolp
:val-type integerp
:true-listp t)
)
(def-saved-event fty-defalist-theorem-example
(defthm fty-defalist-theorem
(implies (and (symbol-integer-alist-p l)
(symbolp s1)
(symbolp s2)
(not (equal (assoc-equal s1 (symbol-integer-alist-fix l))
(smt::magic-fix 'symbolp_integerp nil)))
(not (equal (assoc-equal s2 (symbol-integer-alist-fix l))
(smt::magic-fix 'symbolp_integerp nil))))
(>= (x^2+y^2
(cdr (smt::magic-fix 'symbolp_integerp
(assoc-equal s1 (symbol-integer-alist-fix l))))
(cdr (smt::magic-fix 'symbolp_integerp
(assoc-equal s2 (symbol-integer-alist-fix l)))))
0))
:hints(("Goal"
:smtlink
(:fty (symbol-integer-alist))))
:rule-classes nil)
)
(defthm fty-defalist-theorem-acons
(implies (and (symbol-integer-alist-p l)
(symbolp s1)
(symbolp s2)
(not (equal (assoc-equal s1 (symbol-integer-alist-fix
(acons 'x 1
(symbol-integer-alist-fix l))))
(smt::magic-fix 'symbolp_integerp nil)))
(not (equal (assoc-equal s2 (symbol-integer-alist-fix l))
(smt::magic-fix 'symbolp_integerp nil))))
(>= (x^2+y^2
(cdr (smt::magic-fix
'symbolp_integerp
(assoc-equal s1 (symbol-integer-alist-fix
(acons 'x 1
(symbol-integer-alist-fix l))))))
(cdr (smt::magic-fix 'symbolp_integerp
(assoc-equal s2 (symbol-integer-alist-fix l)))))
0))
:hints(("Goal"
:smtlink
(:fty (symbol-integer-alist))))
:rule-classes nil)
(acl2::must-fail
(defthm fty-defalist-theorem-fail
(implies (and (symbol-integer-alist-p l)
(symbolp s1)
(symbolp s2)
(not (equal (assoc-equal s1 (symbol-integer-alist-fix l))
(smt::magic-fix 'symbolp_integerp nil)))
(not (equal (assoc-equal s2 (symbol-integer-alist-fix l))
(smt::magic-fix 'symbolp_integerp nil))))
(>= (x^2+y^2
(cdr (smt::magic-fix 'symbolp_integerp
(assoc-equal s1 (symbol-integer-alist-fix l))))
(cdr (smt::magic-fix 'symbolp_integerp
(assoc-equal s2 (symbol-integer-alist-fix l)))))
1))
:hints(("Goal"
:smtlink
(:fty (symbol-integer-alist))))
:rule-classes nil)
)
(def-saved-event sandwich-example
(defprod sandwich
((bread integerp)
(fillings symbolp)))
)
(def-saved-event fty-defprod-theorem-example
(defthm fty-defprod-theorem
(implies (and (sandwich-p s1)
(sandwich-p s2))
(>= (x^2+y^2
(sandwich->bread s1)
(sandwich->bread s2))
0))
:hints(("Goal"
:smtlink
(:fty (sandwich))))
:rule-classes nil)
)
(acl2::must-fail
(defthm fty-defprod-theorem-fail
(implies (and (sandwich-p s1)
(sandwich-p s2))
(>= (x^2+y^2
(sandwich->bread (sandwich-fix s1))
(sandwich->bread (sandwich-fix s2)))
1))
:hints(("Goal"
:smtlink
(:fty (sandwich))))
:rule-classes nil)
)
(def-saved-event x^2+y^2-fixed-example
(define x^2+y^2-fixed ((x maybe-integer-p)
(y maybe-integer-p))
:returns (res maybe-integer-p)
(b* ((x (maybe-integer-fix x))
(y (maybe-integer-fix y))
((if (equal x (maybe-integer-fix nil)))
(maybe-integer-fix nil))
((if (equal y (maybe-integer-fix nil)))
(maybe-integer-fix nil)))
(maybe-integer-some
(+ (* (maybe-integer-some->val x)
(maybe-integer-some->val x))
(* (maybe-integer-some->val y)
(maybe-integer-some->val y))))))
)
(def-saved-event fty-defoption-theorem-example
(defthm fty-defoption-theorem
(implies (and (maybe-integer-p m1)
(maybe-integer-p m2)
(not (equal m1 (maybe-integer-fix nil)))
(not (equal m2 (maybe-integer-fix nil))))
(>= (maybe-integer-some->val (x^2+y^2-fixed m1 m2))
0))
:hints(("Goal"
:smtlink
(:fty (maybe-integer))))
:rule-classes nil)
)
(acl2::must-fail
(defthm fty-defoption-theorem-fail
(implies (and (maybe-integer-p m1)
(maybe-integer-p m2)
(not (equal m1 (maybe-integer-fix nil)))
(not (equal m2 (maybe-integer-fix nil))))
(>= (maybe-integer-some->val (x^2+y^2-fixed m1 m2))
1))
:hints(("Goal"
:smtlink
(:fty (maybe-integer))))
:rule-classes nil)
)
(acl2::must-fail
(defthm bogus-revised
(implies (and (symbolp symx) (symbolp symy))
(or (eq (symbol-fix symx) 'sym1) (eq (symbol-fix symx) 'sym2)
(eq (symbol-fix symx) 'sym3)
(eq (symbol-fix symy) 'sym1) (eq (symbol-fix symy) 'sym2)
(eq (symbol-fix symy) 'sym3)
(eq (symbol-fix symx)
(symbol-fix symy))))
:hints (("Goal" :smtlink nil)))
)
(acl2::must-fail
(defthm bogus-revised-still-bogus
(implies (and (symbolp symx) (symbolp symy))
(or (eq symx 'symx) (eq symx 'sym2)
(eq symx 'sym3)
(eq symy 'symx) (eq symy 'sym2)
(eq symy 'sym3)
(eq symx symy)))
:hints (("Goal" :smtlink nil)))
)
(defprod sym-prod
((sym symbolp)))
(acl2::must-fail
(defthm bogus-revised-still-bogus-prod
(implies (and (sym-prod-p x) (sym-prod-p y))
(or (eq (sym-prod->sym x) 'sym1) (eq (sym-prod->sym x) 'sym2)
(eq (sym-prod->sym x) 'sym3)
(eq (sym-prod->sym y) 'sym1) (eq (sym-prod->sym y) 'sym2)
(eq (sym-prod->sym y) 'sym3)
(eq (sym-prod->sym x) (sym-prod->sym y))))
:hints (("Goal" :smtlink (:fty (sym-prod)))))
)
(acl2::must-fail
(defthm check-guard
(implies (acl2::integer-listp x)
(equal (1+ (1- (car (acl2::integer-list-fix x))))
(car (acl2::integer-list-fix x))))
:hints (("Goal" :smtlink (:fty (acl2::integer-list)))))
)
(acl2::must-fail
(defthm check-guard-2
(implies (and (symbol-integer-alist-p l)
(symbolp x))
(equal (1+ (1- (cdr
(magic-fix 'symbolp_integerp
(assoc-equal x (symbol-integer-alist-fix
l))))))
(cdr (magic-fix 'symbolp_integerp
(assoc-equal x (symbol-integer-alist-fix l))))))
:hints (("Goal" :smtlink (:fty (symbol-integer-alist)))))
)
(defthm check-guard-3
(implies (maybe-integer-p x)
(equal (1+ (1- (maybe-integer-some->val
(maybe-integer-fix x))))
(maybe-integer-some->val
(maybe-integer-fix x))))
:hints (("Goal" :smtlink (:fty (maybe-integer))))
)
(acl2::must-fail
(defthm check-guard-3-fail
(implies (maybe-integer-p x)
(equal (1+ (1- (maybe-integer-fix x)))
(maybe-integer-fix x)))
:hints (("Goal" :smtlink (:fty (maybe-integer))))
)
)
(acl2::must-fail
(defthm check-rational-cex
(implies (rationalp x)
(not (equal x 1/4)))
:hints (("Goal" :smtlink (:fty (maybe-integer))))
)
)
(acl2::must-fail
(defthm check-boolean-cex
(implies (booleanp x)
(not (equal x nil)))
:hints (("Goal" :smtlink (:fty (maybe-integer))))
)
)
(acl2::must-fail
(defthm check-symbol-cex
(implies (symbolp x)
(not (equal x 'arbitrary-sym)))
:hints (("Goal" :smtlink (:fty (maybe-integer))))
)
)
;; algebraic counter-example example by Carl Kwan
(acl2::must-fail
(defthm poly-sat-7
(implies (and (real/rationalp x)
(equal (* (+ x -1) (+ x 1) (+ x 2)) 0)
(< x 0)
(real/rationalp y)
(equal (* y y) 2))
(and (equal x -1)
(< y 0)))
:rule-classes nil
:hints (("Goal"
:smtlink nil)))
)
(deftutorial FTY-examples
:parents (Tutorial)
:short "A list of FTY examples"
:long "<h3>FTY examples</h3>
<p>Prerequisite read for this tutorial example is @(tsee tutorial).</p>
<p>Smtlink supports types defined by @(tsee acl2::FTY) macros @(tsee defprod), @(tsee
deflist), @(tsee defalist) and @(tsee defoption). We show here an example for
each type.</p>
<h4>defprod</h4>
<p>Define the function @('x^2+y^2')</p>
@(`(:code ($ ||x^2+y^2||))`)
<p>Define the defprod @('sandwich')</p>
@(`(:code ($ sandwich))`)
<p>Then define the theorem to prove:</p>
@(`(:code ($ fty-defprod-theorem-example))`)
<p>This theorem says, given two @('sandwich-p'), then the square sum of the
bread field of the two sandwiches should be non-negative. This example doesn't
quite make sense. Here we use this as an example to show how @('defprod')
defined types can be used in a theorem to be discharged by Smtlink.</p>
<p>We notice the @(':fty') hint is used to tell Smtlink which set of FTY types
we will use in proving this theorem. Here, we use the FTY type
@('sandwich'). Smtlink will check @('fty::flextypes-table') for information
about this FTY type.</p>
<p>Counter-examples for defprods like like:</p>
@({
Possible counter-example found:
((S2 (SANDWICH 0 (SYM 2))) (S1 (SANDWICH 0 (SYM 1))))
})
<h4>deflist</h4>
<p>Define the theorem to prove:</p>
@(`(:code ($ fty-deflist-theorem-example))`)
<p>This theorem says, given a list of integers, if there are at least two
elements, then the square sum of the two elements should be non-negative.</p>
<p>First, Smtlink only allows types defined by deflist that are @(tsee
true-listp). We notice the @(':fty') hint is used to tell Smtlink which set of
FTY types we will use in proving this theorem. Here, we use the FTY type
@('acl2::integer-list'). Smtlink will check @('fty::flextypes-table') to make
sure the given deflist type is a true-listp.</p>
<p>Second, we notice extra fixing functions @(tsee acl2::integer-list-fix)
functions are added. This is because Z3 lists are typed. The polymorphic
functions like @('car') when translated into Z3, also become typed. Therefore
we need to inference which @('car') we want to apply here. Currently Smtlink
doesn't have type inference ability, therefore it requires the user to add
fixing functions for telling it the types.</p>
<p>Counter-examples for deflists like like:</p>
@({
Possible counter-example found: ((L (CONS 0 (CONS 0 NIL))))
})
<h4>defalist</h4>
<p>Define the defalist @('symbol-integer-alist')</p>
@(`(:code ($ symbol-integer-example))`)
<p>Then define the theorem to prove:</p>
@(`(:code ($ fty-defalist-theorem-example))`)
<p>This theorem says, given a symbol-integer-alist l, two symbols s1 and s2, if
one can find both s1 and s2 in the alist l, then the values satisfy that their
square sum is non-negative. I hope the square sum example hasn't bored you yet
at this point.</p>
<p>Similar to deflists, we notice extra fixing functions
@('symbol-integer-alist-fix') functions are added due to similar reasons. In
addition, we notice ACL2 doesn't have a type specification for the thing
returned by an assoc-equal. To make sure @('cdr') knows what its argument type
is, we add a @('magic-fix') function.</p>
<p>Counter-examples for defalists like like:</p>
@({
((S2 (SYM 2)) (L (K SYMBOL (SOME 0))) (S1 (SYM 1)))
})
<p>Here, the counter-example for alist l is</p>
@({(K SYMBOL (SOME 0))})
<p>This means in Z3 a constant array mapping from symbols to the maybe integer
0. Also, @('SYM') stands for generated symbols for symbol
counter-examples.</p>
<h4>defoption</h4>
<p>Define the defoption @('maybe-integer')</p>
@(`(:code ($ maybe-integer-example))`)
<p>Define the fixed version of @('x^2+y^2')</p>
@(`(:code ($ x^2+y^2-fixed-example))`)
<p>Then define the theorem to prove:</p>
@(`(:code ($ fty-defoption-theorem-example))`)
<p>This theorem says, given a maybe-integer m1 and a maybe-integer m2, if they
are not nils, then the square sum of their values is non-negative.</p>
<p>Similar to deflists and defalists, we notice extra fixing functions
@('maybe-integer-fix') functions are added due to similar reasons. In addition,
we notice in definition of function @('x^2+y^2-fixed'), even when one knows x
and y are not nil, they are still maybe-integers. Therefore, field-accessors
and constructors are required.</p>
<p>Counter-examples for defalists like like:</p>
@({
Possible counter-example found: ((M2 (SOME 0)) (M1 (SOME 0)))
})
")
(defthm poly-ineq-example-with-prog2$
(implies (and (real/rationalp x) (real/rationalp y)
(<= (+ (* (/ 9 8) x x) (* y y)) 1)
(<= (prog2$ (cw "I'm here!~%")
(x^2-y^2 x y))
1))
(< y (- (* 3 (- x (/ 17 8)) (- x (/ 17 8))) 3)))
:hints(("Goal"
:smtlink nil)))
;; Abstract datatype example
(encapsulate
(((abstract-p *) => *))
(local
(defun abstract-p (x)
(acl2::any-p x))))
(defthm abstract-example
(implies (abstract-p x)
(equal x x))
:hints(("Goal"
:smtlink (:abstract (abstract-p))))
:rule-classes nil)
;; Thanks to Andrew Walter and Pete Manolios for providing this bug example.
;; In this example, it used to be that unary-/ is translated to be integer
;; division in Z3. Since unary-/ is interpreted as integer division and x >=
;; 10, 1/x is 0, which makes y 0. We fixed this problem by casting the input of
;; unary-/ to be real. Check the reciprocal function in ACL2_to_Z3.py for
;; detail.
(acl2::must-fail
(defthm smt-not-integer-division
(implies (and (integerp x)
(integerp y)
(integerp z)
(>= x 10)
(= y (* (unary-/ x) z)))
(= y 0))
:hints (("goal" :smtlink nil))
:rule-classes nil)
)
|