1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
# Copyright (C) 2015, University of British Columbia
# Written (originally) by Mark Greenstreet (13th March, 2014)
# Counter-example generation: Carl Kwan (May 2016)
# Edited by Yan Peng (15th Nov 2016)
#
# License: A 3-clause BSD license.
# See the LICENSE file distributed with ACL2
import re
from z3 import *
from functools import reduce # for Python 2/3 compatibility
def sort(x):
if type(x) == bool: return BoolSort()
elif type(x) == int: return IntSort()
elif type(x) == float: return RealSort()
elif hasattr(x, 'sort'):
if x.sort() == BoolSort(): return BoolSort()
if x.sort() == IntSort(): return IntSort()
if x.sort() == RealSort(): return RealSort()
else:
raise Exception('unknown sort for expression')
class ACL22SMT(object):
class Symbol:
# define the Z3Sym type
z3Sym = Datatype('Symbol')
z3Sym.declare('sym', ('ival', IntSort()))
z3Sym = z3Sym.create()
# operations for creating a dictionary of symbols
count = 0
dict = {}
def intern(self, name):
try: return(self.dict[name])
except:
self.dict[name] = self.z3Sym.sym(self.count)
self.count = self.count + 1
return(self.dict[name])
def interns(self, namelist):
return [ self.intern(name) for name in namelist ]
class status:
def __init__(self, value):
self.value = value
def __str__(self):
if(self.value is True): return 'QED'
elif(self.value.__class__ == 'msg'.__class__): return self.value
else: raise Exception('unknown status?')
def isThm(self):
return(self.value is True)
class atom: # added my mrg, 21 May 2015
def __init__(self, string):
self.who_am_i = string.lower()
def __eq__(self, other):
return(self.who_am_i == other.who_am_i)
def __ne__(self, other):
return(self.who_am_i != other.who_am_i)
def __str__(self):
return(self.who_am_i)
def __init__(self, solver=None):
if(solver != None): self.solver = solver
else: self.solver = Solver()
self.nameNumber = 0
# ---------------------------------------------------------
# Basic Functions
#
# Type declarations
def IntSort(self): return IntSort()
def RealSort(self): return RealSort()
def BoolSort(self): return BoolSort()
# type related functions
def integerp(self, x): return sort(x) == IntSort()
def rationalp(self, x): return sort(x) == RealSort()
def booleanp(self, x): return sort(x) == BoolSort()
# manually casting integer sort to real sort
def to_real(self, x):
if(hasattr(x, 'sort') and x.sort() == IntSort()):
return(ToReal(x))
else:
return(x)
def plus(self, *args): return reduce(lambda x, y: x+y, args)
def times(self, *args): return reduce(lambda x, y: x*y, args)
def reciprocal(self, x):
if(type(x) is int): return(Q(1,x))
elif(type(x) is float): return 1.0/x
# Casting variable of IntSort to real
else: return 1.0/self.to_real(x)
def negate(self, x): return -x
def lt(self, x,y): return self.to_real(x) < self.to_real(y)
def equal(self, x,y): return self.to_real(x) == self.to_real(y)
def notx(self, x): return Not(x)
def implies(self, x, y): return Implies(x,y)
def Qx(self, x, y): return Q(x,y)
def ifx(self, condx, thenx, elsex):
try:
return If(condx, thenx, elsex)
except:
print('If failed')
print('If(' + str(condx) + ', ' + str(thenx) + ', ' + str(elsex) + ')')
raise Exception('giving up')
# def hint_okay(self):
# return False
# -------------------------------------------------------------
# Proof functions and counter-example generation
def get_vars(self, asserts):
"""
Return a list of ArithRef objects of variables appeared
in the list of expressions stored in asserts.
"""
acc = []
def get_vars_ast(v):
if(hasattr(v, "children")):
# hopefully, v is a z3 expression
if v.children() == []:
if not(is_int_value(v) or \
is_rational_value(v) or \
is_true(v) or is_false(v) or \
v.sexpr() == 'nil'):
return [v]
else:
return []
else:
children_lst = []
for nu in v.children():
children_lst += get_vars_ast(nu)
return children_lst
else:
return []
for ast in asserts:
acc += get_vars_ast(ast)
return list(set(acc))
def get_model(self, var_lst):
m = self.solver.model()
dontcare_lst = []
model_lst = []
for var in var_lst:
if m.__getitem__(var) == None:
value = m.eval(var, model_completion = True)
dontcare_lst.append([var, value])
else:
value = m.eval(var)
model_lst.append([var, value])
return [model_lst, dontcare_lst]
def translate_to_acl2(self, model_lst, dontcare_lst):
model_acl2 = []
dontcare_acl2 = []
def translate_value(n, v):
translated_v = str(v)
if (is_algebraic_value(v)):
rt_obj = str(v.sexpr())
rt_obj = rt_obj.replace("root-obj", "cex-root-obj " + n + " state")
translated_v = rt_obj
translated_v = translated_v.replace(",", "")
translated_v = re.sub(r"([a-zA-Z0-9_]+?)\(", r"\(\1 ", translated_v)
translated_v = translated_v.replace(".0", "").replace("False", "nil").replace("True","t")
return translated_v
def translate_model(model):
m = model[0]
name = m.decl().name()
value = model[1]
return "(" + name + " " + translate_value(name, value) + ")"
model_acl2 = [translate_model(model) for model in model_lst]
dontcare_acl2 = [translate_model(model) for model in dontcare_lst]
return [model_acl2, dontcare_acl2]
def proof_counterExample(self):
asserts = self.solver.assertions()
var_lst = self.get_vars(asserts)
[model_lst, dontcare_lst] = self.get_model(var_lst)
[model_acl2, dontcare_acl2] = self.translate_to_acl2(model_lst, dontcare_lst)
print('\'(' + ' '.join(model_acl2+dontcare_acl2) + ')')
print('Without dontcares: ' + '\'(' + ' '.join(model_acl2) + ')')
def proof_success(self):
print('proved')
def proof_fail(self):
print('failed to prove')
# usage prove(claim) or prove(hypotheses, conclusion)
def prove(self, hypotheses, conclusion=None):
if(conclusion is None): claim = hypotheses
else: claim = Implies(hypotheses, conclusion)
self.solver.push()
self.solver.add(Not(claim))
res = self.solver.check()
if res == unsat: self.proof_success()
elif res == sat: self.proof_counterExample()
else: self.proof_fail()
self.solver.pop()
return(self.status(res == unsat))
|