1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
|
; Copyright (C) 2014, ForrestHunt, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Symbolic State Management -- Version 22
; J Strother Moore
; Fall/Winter, 2014/2015
; Georgetown, TX and Edinburgh, Scotland
#|| Certification:
; (ld "byte-addressed-state.lisp" :ld-pre-eval-print t)
; (certify-book "byte-addressed-state")
||#
; This file started out as
; B-Code model by Warren A. Hunt, Jr with changes by J Strother Moore
; Bcode5 became b-code5x to accommodate slight changes in the machine model to
; facilitate DES codewalks. B-code5 became B-code5x-reduced to eliminate all
; lemmas unnecessary for codewalks and to add the lemmas (some formerly from
; cw-exp-lemmas.lisp) to canonicalize states.
; Most comments have been stripped out to keep this file as simple as possible.
(in-package "SMAN")
(local (include-book "arithmetic-5/top" :dir :system))
; Some miscellaneous definitions.
(defmacro !nth (key val l)
`(update-nth ,key ,val ,l))
(add-macro-fn !nth update-nth)
; The PCODE machine state
; The length of the memory in the stobj is given by the function ml. Memory is
; not resizeable. That makes our bounds proofs faster. ML will not be
; disabled. The constant value of (ML st) is given by the following constant.
(defconst *m-size* 5312)
(defstobj st ; Machine state
(i :type unsigned-byte :initially 0) ; program counter
(s :initially nil) ; status
(m :type (array (unsigned-byte 8) (*m-size*)) ; memory
:initially 0
:resizable nil
)
:inline t
:renaming
((update-i !i)
(update-s !s)
(update-mi !mi) (m-length ml)))
; Before we define the machine itself we want to prove lemmas to canonicalize
; state expressions. A few of these lemmas are used in the guard proofs for
; the machine model -- provided the accessors and updaters are disabled. So
; we'll prove their basic properties and disable them so we can treat the state
; and its accessors and updaters as abstract functions with certain nice
; properties when we do the guard proofs.
; The basic accessors are i, s, and mi and the basic updaters are !i, !s, and
; !mi.
; However, we will then define r and !r to read from and write to m in
; n-byte chunks. All uses of mi and !mi will be hidden inside r and !r,
; which will ultimately be disabled. In the final state expressions we'll
; never see m or !mi, just r and !r. Thus, far all intents and purposes the
; basic accessors are i, s, and r and the basic updaters are !i, !s, and !r.
; The general strategy for canonicalizing state expressions is to prove a
; ``Standard Series'' of lemmas about the state recognizer, accessors, and
; updaters. In our case, we'll prove the Standard Series first about the true
; primitives (including mi and !mi). Then we'll disable those functions and
; prove the Standard Series ``again'' except for r and !r. We'll limit our
; r/!r lemmas to the situation when the same number of bytes are read or
; written and not consider reading from within or overlapping with a sequence
; of bytes written.
; The Standard Series is sketched here:
; - Accessor Types: what sort of object do the accessors return? E.g., (natp
; (i st)).
; - State Invariance: when does an updater preserve the state recognizer? For
; memory this involves proving an intermediate fact about (mp (!mi i v lst))
; We also include on odd duck lemma in this category: the forward chaining
; rule from the state recognizer to its conjuncts, so that the recognizer can
; generally be disabled.
; - Access/Update Expressions: what do you get if you apply an arbitrary
; accessor to an arbitrary updater? E.g., what can you say about (i (!i v
; st)) and (i (!s v st))? For memory this involves (mi i1 (!mi i2 v
; st))-like questions.
; - Update/Update Expressions: what happens if you compose two arbitrary
; updaters in either order? E.g., what is (!i i1 (!i i2 st)), (!i i (!s s
; st)) or (!s s (!i i st))? For memory this involves (!mi i1 v1 (!mi i2 v2
; st)).
; - Update/Access Expressions: what happens if you update a field with its
; - current value? E.g., what is (!i (i st) st)?
; About our use of LOCAL: in our final canonical form there will be no
; occurrences of mi, !mi, !nth, or update-nth. Furthermore, the only
; occurrences of nth will be to access the components of the stobj; during the
; proofs in this book we'll use car/cdr/cons to represent the stobj and so will
; expand nth and update-nth on indices 0, 1, and 2. Outside this book all
; these functions will be disabled. Therefore, we lose nothing and sometimes
; get marginal efficiency gains by making LOCAL any lemmas that target these
; functions. (The marginal efficiency comes from not even trying to match a
; lemma that rewrites, say, (i (!mi ma v st)) because there will be no !mi
; terms in our goals.)
; Before building the Standard Series for the true primitives, we prove a
; few lemmas about nth and !nth.
(local
(defthm natp-nth-mp
(implies (and (mp x)
(integerp n)
(<= 0 n)
(< n (len x)))
(natp (nth n x)))
:rule-classes :type-prescription))
(local
(defthm bytep-nth-mp
(implies (and (mp x)
(integerp n)
(<= 0 n)
(< n (len x)))
(< (nth n x) 256))
:rule-classes :linear))
(local
(defthm mp-!nth
(implies (and (mp x)
(< ma (len x))
(integerp v)
(<= 0 v)
(< v 256))
(mp (!nth ma v x)))))
(local
(defthm !nth-nth
(implies (and (integerp n)
(<= 0 n)
(< n (len x))
(equal (nth n x) v))
(equal (!nth n v x)
x))))
(local
(defthm !nth-!nth-same
(equal (!nth i v1 (!nth i v2 x))
(!nth i v1 x))))
(local
(defthm !nth-!nth-diff
(implies (and (integerp i1)
(<= 0 i1)
(integerp i2)
(<= 0 i2)
(not (equal i1 i2)))
(equal (!nth i1 v1 (!nth i2 v2 lst))
(!nth i2 v2 (!nth i1 v1 lst))))))
; These two lemmas force nth and update-nth to expand on the stobj indices,
; during the proofs of the Standard Series.
(local
(defthm nth-0-1-2
(and (equal (nth 0 x) (car x))
(equal (nth 1 x) (cadr x))
(equal (nth 2 x) (caddr x)))
:hints (("Goal" :expand ((:free (x) (nth 1 x))
(:free (x) (nth 2 x)))))))
(local
(defthm update-nth-0-1-2
(and (equal (update-nth 0 v x) (cons v (cdr x)))
(equal (update-nth 1 v x) (cons (car x) (cons v (cddr x))))
(equal (update-nth 2 v x) (cons (car x) (cons (cadr x) (cons v (cdddr x))))))
:hints (("Goal" :expand ((:free (v x) (update-nth 1 v x))
(:free (v x) (update-nth 2 v x)))))))
(in-theory (disable nth update-nth))
; Standard Series for True Primitives
; Accessor Types:
(defthm natp-i
(implies (stp st)
(natp (i st)))
:rule-classes :type-prescription)
; no restriction on (s st)
(local
(defthm natp-mi
(implies (and (stp st)
(integerp ma)
(<= 0 ma)
(< ma *m-size*)) ; = (ml st) but no need to expand ml
(natp (mi ma st)))
:rule-classes :type-prescription))
(local
(defthm bytep-mi
(implies (and (stp st)
(integerp ma)
(<= 0 ma)
(< ma *m-size*))
(< (mi ma st) 256))
:rule-classes :linear))
; State Invariance:
(defthm stp-!i
(implies (and (integerp pc)
(<= 0 pc)
(stp st))
(stp (!i pc st))))
(defthm stp-!s
(implies (stp st)
(stp (!s flg st))))
(defthm stp-!mi
(implies (and (stp st)
(< ma *m-size*)
(integerp v)
(<= 0 v)
(< v 256))
(stp (!mi ma v st))))
(defthm st-properties ; (``Odd Duck'')
(implies (stp st)
(and (consp st)
(true-listp st)
(equal (len st) 3)
(integerp (nth 0 st))
(<= 0 (nth 0 st))
(mp (nth 2 st))
(equal (len (nth 2 st)) *m-size*)
))
:rule-classes :forward-chaining)
; Access/Update Expressions:
(defthm i-!i
(equal (i (!i pc st)) pc))
(defthm i-!s
(equal (i (!s flg st)) (i st)))
(defthm i-!mi
(equal (i (!mi ma v st)) (i st)))
(defthm s-!i
(equal (s (!i pc st)) (s st)))
(defthm s-!s
(equal (s (!s flg st)) flg))
(defthm s-!mi
(equal (s (!mi ma v st)) (s st)))
(local
(defthm mi-!i
(equal (mi ma (!i pc st))
(mi ma st))))
(local
(defthm mi-!s
(equal (mi ma (!s flg st))
(mi ma st))))
(local
(defthm mi-!mi
(implies (and (integerp ma1)
(<= 0 ma1)
(integerp ma2)
(<= 0 ma2))
(equal (mi ma1 (!mi ma2 v2 st))
(if (equal ma1 ma2)
v2
(mi ma1 st))))))
; Update/Update Expressions:
(defthm !i-!i
(equal (!i pc1 (!i pc2 st))
(!i pc1 st)))
; We leave (!i ... (!s ...)) and (!i ... (!mi ...)) unchanged.
(defthm !s-!i
(equal (!s s (!i pc st))
(!i pc (!s s st))))
(defthm !s-!s
(equal (!s flg1 (!s flg2 st))
(!s flg1 st)))
; We leave (!s ... (!mi ...)) unchanged.
(local
(defthm !mi-!i
(equal (!mi ma v (!i pc st))
(!i pc (!mi ma v st)))))
(local
(defthm !mi-!s
(equal (!mi ma v (!s s st))
(!s s (!mi ma v st)))))
(defthm !mi-!mi-same
(implies (and (integerp ma)
(<= 0 ma))
(equal (!mi ma v1 (!mi ma v2 st))
(!mi ma v1 st))))
(defthm !mi-!mi-diff
(implies (and (integerp ma1)
(<= 0 ma1)
(integerp ma2)
(<= 0 ma2)
(not (equal ma1 ma2)))
(equal (!mi ma1 v1 (!mi ma2 v2 st))
(!mi ma2 v2 (!mi ma1 v1 st))))
:rule-classes ((:rewrite :loop-stopper ((ma1 ma2 !mi)))))
; Update/Access Expressions:
(defthm !i-i
(implies (and (stp st)
(equal (i st) pc))
(equal (!i pc st) st)))
(defthm !s-s
(implies (and (stp st)
(equal (s st) flg))
(equal (!s flg st) st)))
(defthm !mi-mi
(implies (and (stp st)
(integerp ma)
(<= 0 ma)
(< ma *m-size*)
(equal (mi ma st) v))
(equal (!mi ma v st)
st)))
; End of Standard Series for True Primitives.
(in-theory (disable stp i !i s !s mp mi !mi))
; Definitios of R and !R
; R -- ReaD Memory (sz bytes)
(defun r (ma sz st)
(declare (xargs :guard (and (integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz)
(<= (+ ma sz) *m-size*))
:verify-guards t
:stobjs (st)))
(if (zp sz)
0
(let ((byte (mbe :logic (logand 255 (mi ma st))
:exec (mi ma st)))
(rest (ash (r (1+ ma) (1- sz) st) 8)))
(+ byte rest))))
; !R -- WRite Memory (sz bytes, thus v may be truncated)
(defun !r (ma sz v st)
(declare (xargs :guard (and (integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz)
(<= (+ ma sz) *m-size*)
(integerp v)
(<= 0 v))
:stobjs (st)))
(if (zp sz)
st
(let ((byte (logand v 255))
(rest (ash v -8)))
(let ((st (!mi ma byte st)))
(!r (1+ ma) (1- sz) rest st)))))
; Standard Series Redux -- with r/!r instead of mi/!mi
; We repeat the Standard Series, except that we only re-state lemmas that
; involve mi and/or !mi. Those lemmas are re-stated in terms of r and !r.
; Accessor Types:
; From the defun of r we know (integerp (r ma sz st)).
(defthm r-bound ; in place of natp-mi and bytep-mi
(and (<= 0 (r ma sz st))
(< (r ma sz st)
(expt 256 sz)))
:hints (("Goal"
:expand ((expt 256 sz))
:in-theory (disable acl2::normalize-factors-gather-exponents)
))
:rule-classes :linear)
; State Invariance:
(defthm stp-!r ; in place of stp-!mi
(implies (and (stp st)
(integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz)
(<= (+ ma sz) *m-size*))
(stp (!r ma sz v st))))
; Access/Update Expressions:
(defthm i-!r ; in place of i-!mi
(equal (i (!r ma sz v st)) (i st)))
(defthm s-!r ; in place of s-!mi
(equal (s (!r ma sz v st)) (s st)))
(defthm r-!i ; in place of mi-!i
(equal (r ma sz (!i pc st))
(r ma sz st)))
(defthm r-!s ; in place of mi-!s
(equal (r ma sz (!s flg st))
(r ma sz st)))
; We take time away from the standard series to prove the lemmas necessary for
; r-!r-same and r-!r-diff lemmas (in place of mi-!mi).
; This lemma should be among the Logical/Arithmetic Lemmas below because it is
; useful in code analysis. But it is needed now.
(defthm unnecessary-mod
(implies (and (integerp i)
(<= 0 i)
(integerp j)
(<= 0 j)
(< i j))
(equal (mod i j) i)))
(local
(defthm unnecessary-floor
(implies (and (integerp i)
(<= 0 i)
(integerp j)
(<= 0 j)
(< i j))
(equal (floor i j) 0))))
; To prove the r-!r lemmas we have to first relate mi and !r: what do you
; get when you read a byte from a memory in which multiple bytes have been
; written? We split it into two cases: reading above the write and below the
; write. We'll call such lemmas ``mixed'' because they involve symbols from
; two different levels of abstraction. Mixed lemmas can be local.
(local ; mixed
(defthm mi-!r+
(implies (and (integerp ra)
(<= 0 ra)
(integerp wa)
(<= 0 wa)
(< ra wa)) ;; write-above
(equal (mi ra (!r wa wz v st))
(mi ra st)))))
(local ; mixed
(defthm mi-!r-
(implies (and (integerp ra)
(<= 0 ra)
(integerp wa)
(<= 0 wa)
(<= (+ wa wz) ra) ;; Write below
; (< ra (ml st))
)
(equal (mi ra (!r wa wz v st))
(mi ra st)))))
; Now we proved some r-1-!mi lemmas... These are needed later but this is the
; right environment to prove them. We disable them after proof just to show we
; don't need them.
(defthm r-1-!mi
(implies (natp a)
(equal (r a 1 (!mi b v st))
(cond ((natp b)
(cond ((< a b) (r a 1 st))
((= a b) (logand 255 v))
(t (r a 1 st))))
((equal a 0) (logand 255 v))
(t (r a 1 st)))))
:hints (("Goal" :in-theory (enable mi !mi)
:expand ((:free (a st) (r a 1 st))))))
(in-theory (disable r-1-!mi))
; Now we return to standard series...
#||
; We used to use this, but writing a metafunction to manage r-!r is easier
; if we don't constrain the values being stored:
(defthm r-!r-same ; in place of mi-!mi
(implies (and (integerp ma)
(<= 0 ma)
(<= (+ ma sz) *m-size*)
(integerp v)
(<= 0 v)
(< v (expt 256 sz)))
(equal (r ma sz (!r ma sz v st))
v)))
; So now we use:
||#
; This is just a subgoal of the r-!r-same, except we've generalized a r-!r
; inductive hyp to the variable r.
(local
(defthm r-!r-same-lemma
(implies (and (not (zp sz))
(not (integerp (* 1/256 v)))
(equal (- (floor v 256)
(* (expt 256 (+ -1 sz))
(floor v (expt 256 sz))))
r)
; (integerp ma)
; (<= 0 ma)
; (<= (+ ma sz) 5312)
(integerp v))
(equal (equal (+ (mod v 256)
(* 256
r))
(mod v (expt 256 sz)))
t))
:hints (("Goal" :in-theory (enable floor mod)))))
(defthm r-!r-same ; in place of mi-!mi
(implies (and (integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz))
(equal (r ma sz (!r ma sz v st))
(mod (ifix v) (expt 256 sz)))))
; We prove two lemmas to handle read-over-write, one where the read is below
; the write and one where the read is above the write. No analysis has been
; done to determine which of the two is used more often -- and hence we have
; no certainty that they should be stored in this order!
(defthm r-!r-diff-below ; in place of mi-!mi
; This is READ-over-WRITE lemma for different non-overlapping addresses where
; the R is below the write.
(implies (and (<= (+ ra sz) wa) ; we check the `below' hyp first!
(integerp ra)
(<= 0 ra)
(integerp wa)
(<= 0 wa))
(equal (r ra sz (!r wa wz v st))
(r ra sz st))))
(defthm r-!r-diff-above ; in place of mi-!mi
; This is READ-over-WRITE lemma for different non-overlapping addresses where
; the R is above the write.
(implies (and (<= (+ wa wz) ra) ; we check the `above' hyp first!
(integerp ra)
(<= 0 ra)
; (<= (+ ra sz) (ml st))
(integerp wa)
(<= 0 wa)
; (<= (+ wa wz) (ml st))
)
(equal (r ra sz (!r wa wz v st))
(r ra sz st))))
; Update/Update Expressions:
(defthm !r-!i ; in place of !mi-!i
(equal (!r ma sz v (!i pc st))
(!i pc (!r ma sz v st))))
(defthm !r-!s ; in place of !mi-!s
(equal (!r ma sz v (!s s st))
(!s s (!r ma sz v st))))
(local
(defun !r-!r-same-hint (ma sz v1 v2 st)
(declare (xargs :stobjs (st)
:measure (acl2-count sz)
:verify-guards nil))
(if (zp sz)
(mv st v2)
(let ((byte1 (logand v1 255))
(rest1 (ash v1 -8))
(rest2 (ash v2 -8))
)
(let ((st (!mi ma byte1 st)))
(!r-!r-same-hint (1+ ma) (1- sz) rest1 rest2 st))))))
(local ; mixed
(defthm !r-!mi-below
(implies (and (integerp sz1)
(<= 0 sz1)
(integerp ma1)
(<= 0 ma1)
(integerp ma2)
(<= 0 ma2)
(< ma2 ma1))
(equal (!R MA1 SZ1 VAL1
(!MI ma2 VAL2 ST))
(!MI ma2 val2
(!r ma1 sz1 val1 st))))
:hints (("Goal" :in-theory (enable !r)))))
#||
; We used to use:
(defthm !r-!r-same ; in place of !mi-!mi-same
(implies (and (integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz)
(integerp v1)
(<= 0 v1)
(integerp v2)
(<= 0 v2)
)
(equal (!r ma sz v1
(!r ma sz v2 st))
(!r ma sz v1 st)))
:hints (("Goal" :induct (!r-!r-same-hint ma sz v1 v2 st))
("Subgoal *1/2''"
:expand ((!R MA SZ V1 ST)
(!R MA SZ V2 ST)))
("Subgoal *1/2'''"
:expand ((!R MA SZ V1
(!MI MA (MOD V2 256)
(!R (+ 1 MA)
(+ -1 SZ)
(FLOOR V2 256)
ST)))))))
; but abandoned it because it requires testing that the v1 and v2 are integers; that
; makes the metafunction approach harder. Now we use:
||#
(defthm !r-!r-same ; in place of !mi-!mi-same
(implies (and (integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz))
(equal (!r ma sz v1
(!r ma sz v2 st))
(!r ma sz v1 st)))
:hints (("Goal" :induct (!r-!r-same-hint ma sz v1 v2 st))
("Subgoal *1/2.4"
:expand ((!R MA SZ V1 ST)
(!R MA SZ V2 ST)))
("Subgoal *1/2.4'"
:expand ((!R MA SZ V1
(!MI MA (MOD V2 256)
(!R (+ 1 MA)
(+ -1 SZ)
(FLOOR V2 256)
ST)))))
("Subgoal *1/2.3"
:expand ((!R MA SZ V1 ST)
(!R MA SZ V2 ST)))
("Subgoal *1/2.3'"
:expand ((!R MA SZ V1
(!MI MA (MOD V2 256)
(!R (+ 1 MA)
(+ -1 SZ)
(FLOOR V2 256)
ST)))))
("Subgoal *1/2.2"
:expand ((!R MA SZ V1 ST)
(!R MA SZ V2 ST)))
("Subgoal *1/2.2'"
:expand ((!R MA SZ V1
(!MI MA 0
(!R (+ 1 MA)
(+ -1 SZ)
0
ST)))))
("Subgoal *1/2.1"
:expand ((!R MA SZ V1 ST)
(!R MA SZ V2 ST)))
))
; The replacement for !mi-!mi-diff is really two lemmas, depending on whether
; the outer write is above or below the inner write. Technically the two
; lemmas below are variants of one another, but both must be stated so we try
; both instantations.
(defthm !r-!r-diff-below ; in place of !mi-!mi-diff
(implies (and (integerp ma1)
(<= 0 ma1)
(integerp ma2)
(<= 0 ma2)
(integerp sz1)
(<= 0 sz1)
(integerp sz2)
(<= 0 sz2)
(<= (+ ma2 sz2) ma1))
(equal (!r ma1 sz1 val1
(!r ma2 sz2 val2 st))
(!r ma2 sz2 val2
(!r ma1 sz1 val1 st))))
:rule-classes ((:rewrite :loop-stopper ((ma1 ma2 !r)))))
(defthm !r-!r-diff-above ; in place of !mi-!mi-diff
(implies (and (integerp ma1)
(<= 0 ma1)
(integerp ma2)
(<= 0 ma2)
(integerp sz1)
(<= 0 sz1)
(integerp sz2)
(<= 0 sz2)
(<= (+ ma1 sz1) ma2))
(equal (!r ma1 sz1 val1
(!r ma2 sz2 val2 st))
(!r ma2 sz2 val2
(!r ma1 sz1 val1 st))))
:rule-classes ((:rewrite :loop-stopper ((ma1 ma2 !r)))))
; Update/Access Expressions:
(defthm !r-r ; in place of !mi-mi
(implies (and (stp st)
(integerp ma)
(<= 0 ma)
(integerp sz)
(<= 0 sz)
(<= (+ ma sz) (ml st))
(equal v (r ma sz st)))
(equal (!r ma sz v st)
st)))
; End of Standard Series Redux
(in-theory (disable r !r))
; Pick a Point State Equivalence Theorem
; -----------------------------------------------------------------
; Theorems about NTH and NTHCDR
(local (in-theory (enable nth update-nth)))
;(defthm update-nth-update-nth-diff
; (implies (and (natp a)
; (natp b)
; (not (equal a b)))
; (equal (update-nth a x (update-nth b y s))
; (update-nth b y (update-nth a x s))))
; :rule-classes ((:rewrite :loop-stopper ((b a)))))
(local
(defthm nthcdr-is-last
(implies (and (equal (len s1) (+ 1 i))
(integerp i)
(<= 0 i)
(true-listp s1))
(equal (nthcdr i s1)
(list (nth (- (len s1) 1) s1))))))
(local
(defthm nthcdr-update-nth
(implies (and (natp i)
(natp j)
(< j i)
(< i (len a)))
(equal (nthcdr i (update-nth j v a))
(nthcdr i a)))))
(local
(defthm nthcdr-to-end
(implies (and (natp i)
(<= (len x) i)
(true-listp x))
(equal (nthcdr i x)
nil))))
; (encapsulate
; nil
; (local
; (defthm nthcdr-cdr-update-nth-lemma
; (implies (and (natp i)
; (natp min)
; (<= min i)
; (< (+ i 1) (len s1)))
; (equal (nthcdr i (cdr (update-nth min v s1)))
; (nthcdr i (cdr s1))))))
;
; (defthm nthcdr-cdr-update-nth
; (implies (and (natp i)
; (natp min)
; (<= min i)
; (true-listp s1))
; (equal (nthcdr i (cdr (update-nth min v s1)))
; (if (< (+ i 1) (len s1))
; (nthcdr i (cdr s1))
; nil)))))
(local
(defthm nth-and-nthcdr-make-cons
(implies (and (natp i)
(< i (len s1))
(equal (nth i s1) (nth i s2))
(equal (nthcdr i (cdr s1)) (nthcdr i (cdr s2)))
(equal (len s1) (len s2)))
(equal (equal (nthcdr i s1) (nthcdr i s2))
t))))
; -----------------------------------------------------------------
; Random Basic Lemmas
(local
(defthm mp-implies-true-listp
(implies (mp x) (true-listp x))
:hints (("Goal" :in-theory (enable mp)))
:rule-classes :forward-chaining))
(local
(defthm equal-len-0
(equal (equal (len x) 0)
(not (consp x)))))
; -----------------------------------------------------------------
; If there are no divergent addresses, the two ``states'' are equal.
; We quote ``states'' because memory may have been extended! We define
; a weaker version of stp to develop this.
(defun weak-ml (st)
(len (nth 2 st)))
(defun weak-stp (st)
(and (true-listp st)
(= (length st) 3)
; (ip (nth 0 st))
; (sp (nth 1 st))
(< 0 (weak-ml st)) ; The strong r-1-!r hits address 0 so it better exist!
(true-listp (nth 2 st))
; (equal (len (nth 2 st)) 5312)
t))
(defun-nx divergent-addr (i st1 st2)
(declare (xargs :measure (nfix (- (min (weak-ml st1) (weak-ml st2)) (nfix i)))))
(cond
((not (natp i)) 0)
((>= i (min (weak-ml st1) (weak-ml st2)))
0)
((not (equal (mi i st1) (mi i st2)))
i)
(t (divergent-addr (+ 1 i) st1 st2))))
(defthm divergent-addr-legal
(implies (and (weak-stp st1)
(weak-stp st2))
(< (divergent-addr i st1 st2)
(min (weak-ml st1) (weak-ml st2))))
:rule-classes :linear)
(defthm no-divergence-implies-m1=m2
(implies (and (natp i)
(weak-stp st1)
(weak-stp st2)
(equal (weak-ml st1) (weak-ml st2))
(equal (mi (divergent-addr i st1 st2) st1)
(mi (divergent-addr i st1 st2) st2)))
(equal (nthcdr i (nth 2 st1))
(nthcdr i (nth 2 st2))))
:hints (("Goal" :in-theory (enable r mi)))
:rule-classes nil)
(defthm no-divergence-implies-st1=st2
(implies (and (weak-stp st1)
(weak-stp st2)
(equal (i st1) (i st2))
(equal (s st1) (s st2))
(equal (weak-ml st1) (weak-ml st2))
(equal (mi (divergent-addr 0 st1 st2) st1)
(mi (divergent-addr 0 st1 st2) st2)))
(equal st1 st2))
:hints (("Goal" :use ((:instance no-divergence-implies-m1=m2 (i 0)))
:in-theory (e/d (i s) (divergent-addr))))
:rule-classes nil)
(encapsulate
nil
(local
(defthm mi-!r-overlap
(implies (and (natp a)
(natp b)
(natp sz)
(<= b a)
(< a (+ b sz)))
(equal (mi a (!r b sz v st))
(logand 255 (ash v (* -8 (- a b))))))
:hints (("Goal" :in-theory (enable !r)))))
; This theorem is useful when you we prove that two states have no divergent addresses.
(defthm one-byte-read
(implies (and (natp a)
(natp b)
(natp sz))
(equal (mi a (!r b sz v st)) ; Note that we are reading one byte!
(if (< a b)
(mi a st)
(if (< a (+ b sz))
(logand 255 (ash v (* -8 (- a b))))
(mi a st)))))))
(in-theory (disable divergent-addr one-byte-read))
; -----------------------------------------------------------------
; Demonstration of a Drop Thm Proof
; To prove that two states, st1 and st2, are equal, prove they do not diverge
; on an arbitrary legal address, da. Really, you need to prove they do not
; diverge on (divergent-addr 0 st1 st2), but when st1 and st2 are large
; expressions its faster to just use a variable.
(local
(defthm demo-thm--no-divergence
(implies (and (natp a) ;;
(natp sz) ;
(natp b) ; these hyps ensure that
(stp st) ; the writes are legal
(<= (+ a sz) (ml st)) ;
(<= (+ b sz) (ml st)) ;;
(natp da) ;; and this is our arbitrary
) ;; divergent address
(equal (mi da
(!r a sz v1
(!r b sz v2
(!r a sz v3 st))))
(mi da
(!r a sz v1
(!r b sz v2
st)))
))
:hints (("Goal" :in-theory (enable one-byte-read))))) ; <--- enable the one-byte read theorem
(defthm stp-implies-weak-stp
(implies (stp st) (weak-stp st))
:hints (("Goal" :in-theory (enable stp))))
(defthm weak-ml-!mi
(implies (natp a)
(equal (weak-ml (!mi a v st))
(max (+ 1 a) (weak-ml st))))
:hints (("Goal" :in-theory (enable !mi))))
(defthm weak-ml-!r
(implies (natp a)
(equal (weak-ml (!r a sz v st))
(if (zp sz)
(weak-ml st)
(max (weak-ml st)
(+ (nfix a) sz)))))
:hints (("Goal" :in-theory (enable !r !mi))))
(in-theory (disable weak-stp weak-ml))
; So they're equal:
(defthm demo-thm
(implies (and (natp a)
(natp sz)
(natp b)
(stp st)
(<= (+ a sz) (ml st))
(<= (+ b sz) (ml st)))
(equal (!r a sz v1
(!r b sz v2
(!r a sz v3 st)))
(!r a sz v1
(!r b sz v2
st))))
:hints (("Goal" :use (:instance no-divergence-implies-st1=st2
(st1 (!r a sz v1
(!r b sz v2
(!r a sz v3 st))))
(st2 (!r a sz v1
(!r b sz v2
st))))))
:rule-classes nil)
; -----------------------------------------------------------------
; A Stronger One-Byte Read Theorem
(local
(defthm !mi-default-1
(implies (not (natp a))
(equal (!mi a v st) (!mi 0 v st)))
:hints (("Goal" :in-theory (enable !mi update-nth)))))
(local
(encapsulate
nil
(local (include-book "arithmetic-5/top" :dir :system))
(defthm !r-default-1-non-number
(implies (and (not (acl2-numberp a))
(natp sz))
(equal (!r a sz v st)
(!r 0 sz v st)))
:hints (("Goal"
:induct (!r a sz v st)
:in-theory (e/d (!r) nil)))
:rule-classes nil)
(defthm !r-default-1-number-not-integer
(implies (and (acl2-numberp a)
(not (integerp a))
(natp sz))
(equal (!r a sz v st)
(if (zp sz)
st
(!mi 0 (logand (ash v (* -8 (- sz 1))) 255) st))))
:hints (("Goal"
:induct (!r a sz v st)
:in-theory (e/d (!r) nil)))
:rule-classes nil)
(local
(defthm !r-default-1-negative-integer-case-1
(implies (and (integerp a)
(< a 0)
(natp sz)
(<= (+ a sz) 0))
(equal (!r a sz v st)
(if (zp sz)
st
(!mi 0 (logand (ash v (* -8 (+ -1 sz))) 255) st))))
:hints (("Goal"
:induct (!r a sz v st)
:in-theory (e/d (!r) nil)))))
(defthm ash-0
(equal (ash v 0) (ifix v)))
(local
(defthm ash-ash-lemma1
(implies (and (integerp a) (< a 0))
(equal (ASH (ASH V -8) (+ 8 (* 8 A)))
(ASH V (* 8 A))))))
(defthm ash-ash-lemma2
(implies (and (natp a) (natp b))
(equal (ash (ash v (* -8 a)) (* -8 b))
(ash v (* -8 (+ a b))))))
(defthm logand-commutes1
(and (equal (logand x y)(logand y x))
(equal (logand x (logand y z))
(logand y (logand x z)))))
(defthm logand-absorbtion
(equal (logand x (logand x y))
(logand x y))
:hints (("Goal" :in-theory (enable logand))))
(local
(defthm !r-default-1-negative-integer-case-2
(implies (and (integerp a)
(< a 0)
(natp sz)
(not (<= (+ a sz) 0)))
(equal (!r a sz v st)
(!r 0 (+ a sz)
(ash v (* -8 (- a)))
(!mi 0 (logand 255 (ash v (* -8 (- (- a) 1)))) st)
)))
:hints (("Goal"
:induct (!r a sz v st)
:in-theory (e/d (!r) (ash-to-floor))))))
(defthm !r-default-1-negative-integer
(implies (and (integerp a)
(< a 0)
(natp sz))
(equal (!r a sz v st)
(if (<= (+ a sz) 0)
(if (zp sz)
st
(!mi 0 (logand (ash v (* -8 (+ -1 sz))) 255) st))
(!r 0 (+ a sz)
(ash v (* -8 (- a)))
(!mi 0 (logand 255 (ash v (* -8 (- (- a) 1)))) st)
))))
:rule-classes nil)))
(local
(defthm !r-default-1
(implies (and (not (natp a))
(natp sz))
(equal (!r a sz v st)
(if (acl2-numberp a)
(if (integerp a)
(if (<= (+ a sz) 0)
(if (zp sz)
st
(!mi 0 (logand (ash v (* -8 (+ -1 sz))) 255) st))
(!r 0 (+ a sz)
(ash v (* -8 (- a)))
(!mi 0 (logand 255 (ash v (* -8 (- (- a) 1)))) st)
))
(if (zp sz)
st
(!mi 0 (logand (ash v (* -8 (- sz 1))) 255) st)))
(!r 0 sz v st))))
:hints (("Goal"
:use (!r-default-1-non-number
!r-default-1-number-not-integer
!r-default-1-negative-integer)))))
; In the following version of one-byte-read, we have no hypotheses about b. In
; the regular version, we require b to be a natural. Both versions are
; disabled by default.
(defthm one-byte-read-stronger
(implies (and (natp a)
(natp sz))
(equal (mi a (!r b sz v st))
(if (natp b)
(if (< a b)
(mi a st)
(if (< a (+ b sz))
(logand 255 (ash v (* -8 (- a b))))
(mi a st)))
(if (acl2-numberp b)
(if (integerp b)
(if (<= (+ b sz) 0)
(if (zp sz)
(mi a st)
(mi a (!r 0 1 (logand (ash v (* -8 (+ -1 sz))) 255) st)))
(if (equal a 0)
(logand 255 (ash v (* -8 (- b))))
(if (< a (+ b sz))
(logand 255 (ash v (* -8 (+ a (- b)))))
(mi a st))))
(if (zp sz)
(mi a st)
(if (zp a)
(logand 255 (ash v (* -8 (- sz 1))))
(mi a st))))
(if (equal a 0)
(if (zp sz)
(mi 0 st)
(logand 255 v))
(if (< a sz)
(logand 255 (ash v (* -8 a)))
(mi a st)))))))
; The odd collection of runes disabled below is due to the evolutionary history
; of this proof. We first developed in after certifying
; byte-addressed-state.lisp and so various arithmetic lemmas were not available
; during the original proof. The lemmas developed then for the proof were
; seeing a slightly different normal form. Rather than change the lemmas, we
; just shut down certain arithmetic rules.
:hints (("Goal" :in-theory (e/d (one-byte-read r-1-!mi)
(mod floor ash logior logxor
ash-to-floor
acl2::logand-constant-mask
acl2::|(* x (- y))|)))
("Subgoal 12" :cases ((< b 0)))
("Subgoal 11" :cases ((< b 0)))))
(defthm weak-stp-implies-weak-ml-non-zero
(implies (weak-stp st)
(< 0 (weak-ml st)))
:hints (("Goal" :in-theory (enable weak-stp weak-ml)))
:rule-classes :linear)
(defthm weak-ml-!r-stronger
(implies (and (weak-stp st)
(natp sz))
(equal (weak-ml (!r a sz v st))
(if (acl2-numberp a)
(if (integerp a)
(if (natp a)
(if (zp sz)
(weak-ml st)
(max (weak-ml st)
(+ a sz)))
(if (<= (+ a sz) 0)
(if (zp sz)
(weak-ml st)
(max (+ 1 a) (weak-ml st)))
(max (+ a sz)
(max 1 (weak-ml st)))))
(if (zp sz)
(weak-ml st)
(max 1 (weak-ml st))))
(max sz (weak-ml st)))))
:hints (("Subgoal 2'" :in-theory (enable !r))))
; -----------------------------------------------------------------
; Demonstration of a Stronger Drop Thm Proof
; Here we reprise the previous demo, without hypotheses about the writes, other
; than the sizes.
; To prove that two states, st1 and st2, are equal, prove they do not diverge
; on an arbitrary legal address, da. Really, you need to prove they do not
; diverge on (divergent-addr 0 st1 st2), but when st1 and st2 are large
; expressions its faster to just use a variable.
; Again, the lemmas in the theory below were just those actually used in the
; original proof of this theorem OUTSIDE of this book.
(local
(defthm stronger-demo-thm--no-divergence
(implies (and (natp sz)
(natp da) ;; this is our arbitrary
) ;; divergent address
(equal (mi da
(!r a sz v1
(!r b sz v2
(!r a sz v3 st))))
(mi da
(!r a sz v1
(!r b sz v2
st)))
))
:hints (("Goal" :in-theory '((:COMPOUND-RECOGNIZER acl2::NATP-COMPOUND-RECOGNIZER)
(:COMPOUND-RECOGNIZER acl2::ZP-COMPOUND-RECOGNIZER)
(:DEFINITION ASH)
(:DEFINITION FIX)
(:DEFINITION FLOOR)
(:DEFINITION IFIX)
(:DEFINITION ML)
(:DEFINITION NATP)
(:DEFINITION NOT)
(:EXECUTABLE-COUNTERPART <)
(:EXECUTABLE-COUNTERPART ACL2-NUMBERP)
(:EXECUTABLE-COUNTERPART BINARY-*)
(:EXECUTABLE-COUNTERPART BINARY-+)
(:EXECUTABLE-COUNTERPART EQUAL)
(:EXECUTABLE-COUNTERPART NATP)
(:EXECUTABLE-COUNTERPART NOT)
(:EXECUTABLE-COUNTERPART RATIONALP)
(:EXECUTABLE-COUNTERPART UNARY--)
(:EXECUTABLE-COUNTERPART UNARY-/)
(:EXECUTABLE-COUNTERPART ZP)
(:REWRITE ASH-0)
(:REWRITE COMMUTATIVITY-OF-*)
(:REWRITE COMMUTATIVITY-OF-+)
(:REWRITE DISTRIBUTIVITY)
(:REWRITE LOGAND-ABSORBTION)
(:REWRITE LOGAND-COMMUTES1)
(:REWRITE ONE-BYTE-READ-STRONGER)
(:REWRITE UNICITY-OF-0)
(:REWRITE UNICITY-OF-1)
(:TYPE-PRESCRIPTION BINARY-LOGAND)
(:TYPE-PRESCRIPTION EXPT-TYPE-PRESCRIPTION-NON-ZERO-BASE)
(:TYPE-PRESCRIPTION RATIONALP-EXPT-TYPE-PRESCRIPTION))))))
(defthm weak-stp-!mi
(implies (and (weak-stp st)
(natp v)
(< v 256))
(weak-stp (!mi a v st)))
:hints (("Goal" :in-theory (enable weak-stp weak-ml !mi))))
(defthm weak-stp-!r
(implies (weak-stp st)
(weak-stp (!r a sz v st)))
:hints (("Goal" :in-theory (enable weak-stp !r))))
; So they're equal: <------------ this claim isn't true.
(defthm stronger-demo-thm
(implies (and (natp sz)
(stp st)
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; These hyps are undesirable because they constrain the writes but they are
; necessary if we go through the weaker right now because no-divergence-implies-st1=st2 requires the two
; ``states'' to be stps. I would like to weaken stp to only require that they
; be the right shape: (* * (* * * ...)) and have the same len mem. Let's call
; the shape predicate weak-stp and the length function weak-ml. Now we need
; the theorems that !r preserves weak-stp and that the weak-ml of !r is the max
; of that of the initial state and the obvious. Then we need to extend the
; no-divergence-implies-st1=st2 to give us the same weak-mls.
; (natp a)
; (natp b)
; (natp sz)
; (< (+ a sz) (ml st))
; (< (+ b sz) (ml st))
;
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
)
(equal (!r a sz v1
(!r b sz v2
(!r a sz v3 st)))
(!r a sz v1
(!r b sz v2
st))))
:hints (("Goal" :use (:instance no-divergence-implies-st1=st2
(st1 (!r a sz v1
(!r b sz v2
(!r a sz v3 st))))
(st2 (!r a sz v1
(!r b sz v2
st))))))
:rule-classes nil)
; -----------------------------------------------------------------
; Absorbtion Theorems
(encapsulate
nil
(local
(defthm !r-simple-absorbtion-lemma1
(equal (!nth addr byte1 (!nth addr byte2 lst))
(!nth addr byte1 lst))
:hints (("Goal" :in-theory (enable !nth)))))
(local
(defthm !r-simple-absorbtion-lemma2
(equal (!mi addr byte1 (!mi addr byte2 st))
(!mi addr byte1 st))
:hints (("Goal" :in-theory (enable !mi)))))
(local
(defthm !r-simple-absorbtion-lemma3
(implies (not (zp sz))
(equal (!r addr sz val (!mi addr byte st))
(!r addr sz val st)))
:hints (("Goal" :in-theory (enable !r)))))
(defthm !r-simple-absorbtion
(implies (natp sz)
(equal (!r addr1 sz val1 (!r addr1 sz val2 st))
(!r addr1 sz val1 st)))
:hints (("Goal"
:cases ((natp addr1))))))
(encapsulate
nil
(local
(defthm lemma1
(IMPLIES (AND (INTEGERP A1)
(<= 0 A1)
(INTEGERP N1)
(<= 0 N1)
(INTEGERP A2)
(<= 0 A2)
(EQUAL (!R A1 N1 V1 ST1)
(!R A1 N1 V1 ST2)))
(equal (EQUAL (!R A1 N1 V1 (!MI A2 i ST1))
(!R A1 N1 V1 (!MI A2 i ST2)))
t))
:hints (("Goal"
:in-theory (enable !r))
("Subgoal *1/7.2'"
:cases ((< a1 a2)
(equal a1 a2)
(< a2 a1)))
("Subgoal *1/7.1'"
:cases ((< a1 a2)
(equal a1 a2)
(< a2 a1))))))
(local
(defthm !r-inner-absorbtion-natp-case
(implies (and (natp a1)
(natp n1)
(natp a2)
(natp n2)
(equal (!r a1 n1 v1 st1)
(!r a1 n1 v1 st2)))
(equal (equal (!r a1 n1 v1
(!r a2 n2 v2 st1))
(!r a1 n1 v1
(!R a2 n2 v2 st2)))
t))
:hints (("Goal"
:in-theory (enable !r)
:induct (list (!r a2 n2 v2 st1)
(!r a2 n2 v2 st2))))))
(local
(defthm !m-simple-absorbtion-lemma
(IMPLIES (EQUAL (CDR lst1)
(CDR lst2))
(equal (EQUAL (CDR (!NTH A W lst1))
(CDR (!NTH A W lst2)))
t))))
(defthm !m-simple-absorbtion
(implies (equal (!mi 0 v st1)
(!mi 0 v st2))
(equal (equal (!mi 0 v (!mi a w st1))
(!mi 0 v (!mi a w st2)))
t))
:hints (("Goal" :in-theory (enable !mi))))
(defthm !m-inner-absorbtion
(implies (equal (!mi 0 v st1)
(!mi 0 v st2))
(equal (equal (!mi 0 v (!r a n w st1))
(!mi 0 v (!r a n w st2)))
t))
:hints (("Goal"
:in-theory (enable !r))))
(local
(defthm !r-0-!m-0
(implies (natp sz)
(equal (!r 0 sz v (!mi 0 w st))
(if (zp sz)
(!mi 0 w st)
(!r 0 sz v st))))
:hints (("Goal" :in-theory (enable !r)))))
(defthm !r-base-case
(equal (!r a 0 v st) st)
:hints (("Goal" :in-theory (enable !r))))
(defthm !r-inner-absorbtion
(implies (and (natp n1)
(natp n2)
(equal (!r a1 n1 v1 st1)
(!r a1 n1 v1 st2)))
(equal (equal (!r a1 n1 v1
(!r a2 n2 v2 st1))
(!r a1 n1 v1
(!R a2 n2 v2 st2)))
t))
:hints (("Goal"
:cases ((and (natp a1) (natp a2))
(and (natp a1) (not (natp a2)))
(and (not (natp a1)) (natp a2))
(and (not (natp a1)) (not (natp a2))))))))
; To prove mx-rover correct we need the basic read-over-write theorems but for
; the mixed cases. (r a n ...) peels off one byte at a time but the function
; above does peels off varying numbers of bytes, so the lemmas we need about R
; and !R are inductive. Here they are:
(defthm integerp-product-by-expt
(implies (and (integerp (* v (expt base n)))
(<= n m)
(natp base)
(integerp v)
(integerp n)
(integerp m))
(integerp (* v (expt base m))))
:hints (("Goal"
:use (:instance (:theorem (implies (and (natp base)
(integerp v)
(integerp n)
(natp delta)
(integerp (* v (expt base n))))
(integerp (* v (expt base (+ n delta))))))
(delta (- m n)))
:in-theory (e/d (acl2::scatter-exponents-theory)
(acl2::gather-exponents-theory)))))
; We need to express (expt 2 (* 8 sum)) as (expt 256 sum), except the product
; is distributed over the sum, there are 1, 2, or 3 terms in the sums in
; question, and some of the summed terms are negative, turning the factor of 8
; into -8. That means that we need several first order patterns to catch the
; relevant combinations. It turns out six lemmas are needed! Of course, we
; could express the general pattern with a hypothesis of (mod sum 8) = 0, but
; that is probably slow. This is a natural application of metafunctions --
; recognizing a sum of products by +/-8 -- but I'll just prove the six rules
; and get on with it.
; Because I had a hard time recognizing if my rules were all distinct I imposed
; a naming discipline. When the suffix starts with P8 or or N8 it means the
; sum-of-products starts with positive or negative 8. Absent P8 or N8, no
; leading constant is present. Next follows a sequence of Ps and/or Ns, where
; P means a factor of 8 and N means a factor of -8.
(defthm expt-2-8*sum-PN
(implies (and (integerp a) (integerp b))
(equal (expt 2 (+ (* 8 a) (* -8 b)))
(expt 256 (+ a (- b))))))
(defthm expt-2-*-sum-N8P
(implies (integerp a)
(equal (expt 2 (+ -8 (* 8 a)))
(expt 256 (+ -1 a)))))
(defthm expt-2-*-sum-PPN
(implies (and (integerp a) (integerp b) (integerp c))
(equal (expt 2 (+ (* 8 A) (* 8 b) (* -8 c)))
(expt 256 (+ a b (- c))))))
(defthm expt-2-*-sum-PNN
(implies (and (integerp a) (integerp b) (integerp c))
(equal (expt 2 (+ (* 8 A) (* -8 B) (* -8 c)))
(expt 256 (+ a (- b) (- c))))))
(defthm expt-2-*-sum-P8PNN
(implies (and (integerp a) (integerp b) (integerp c))
(equal (expt 2 (+ 8 (* 8 A) (* -8 B) (* -8 c)))
(expt 256 (+ 1 a (- b) (- c))))))
(defthm expt-2-*-sum-N8PPN
(implies (and (integerp a) (integerp b) (integerp c))
(equal (expt 2 (+ -8 (* 8 a) (* 8 b) (* -8 c)))
(expt 256 (+ -1 a b (- c))))))
; The following two lemmas were originally named from the names of the subgoals
; in mx-rover-correct-lemma1 for which they were needed. In fact, these two
; lemmas are exactly those subgoals except certain irrelevant details have been
; dropped. These lemmas are provable by simplification -- but not in the
; context of the induction done in the proof mx-rover-correct-lemma1! So I
; had to lift them out of that proof and prove them at the top-level.
; Subsequently I changed the statement of mx-rover-correct-lemma1, by
; replacing a (not (zp n)) hyp with (natp n), and that renamed the subgoals.
; So these lemmas are not actually used at the points in that proof that their
; names suggest. But they are used. Indeed, the second of these lemmas is
; used in a subsequent proof too.
(local
(defthm |MX-ROVER-CORRECT-SUBGOAL-*1/8.1'''|
; This is just the indicated subgoal of (the old version of)
; mx-rover-correct-lemma1, which is not provable within the larger proof
; attempt but is provable at the top-level. I have eliminated hyps that
; introduce free vars.
(IMPLIES (AND ;(INTEGERP I)
;(NOT (INTEGERP (* R (EXPT 256 (+ (- A) B (- N))))))
;(<= 0 (EXPT 256 (+ A (- B) N)))
(<= 0 R)
;(< R (EXPT 256 (+ A (- B) N)))
(NOT (EQUAL R 0))
;(< (* R (EXPT 256 (+ (- A) B (- N)))) 1)
;(NOT (ZP N))
(INTEGERP R)
(NOT (INTEGERP (* R (EXPT 256 (+ -1 (- A) B)))))
;(EQUAL (FLOOR R (EXPT 256 (+ 1 A (- B))))
; (R (+ 1 A)
; (+ -1 N)
; (!R B K (+ R (* I (EXPT 256 (+ A (- B) N))))
; ST)))
(INTEGERP A)
(<= 0 A)
(INTEGERP B)
(<= 0 B)
;(NOT (ZP K))
(<= B A)
;(<= (+ A N) (+ B K))
;(< A (+ B K))
(INTEGERP (* R (EXPT 256 (+ (- A) B))))
(INTEGERP (* (EXPT 256 (+ (- A) B))
(MOD R (EXPT 256 (+ 1 A (- B)))))))
(equal
(EQUAL (* R (EXPT 256 (+ (- A) B)))
(+ (* 256 (FLOOR R (EXPT 256 (+ 1 A (- B)))))
(* 256
(MOD (* (EXPT 256 (+ -1 (- A) B))
(MOD R (EXPT 256 (+ 1 A (- B)))))
1))))
t))))
(local ; Note: This lemma is actually used in the proofs of both
; mx-rover-correct-lemma1 and mx-rover-correct-lemma2.
; Do not encapsulate it around just the first one!
(defthm |MX-ROVER-CORRECT-SUBGOAL-*1/7.1'''|
(IMPLIES (AND ;(INTEGERP I)
;(NOT (INTEGERP (* R (EXPT 256 (+ (- A) B (- N))))))
;(<= 0 (EXPT 256 (+ A (- B) N)))
(<= 0 R)
;(< R (EXPT 256 (+ A (- B) N)))
(NOT (EQUAL R 0))
;(< (* R (EXPT 256 (+ (- A) B (- N)))) 1)
;(NOT (ZP N))
(INTEGERP R)
(NOT (INTEGERP (* R (EXPT 256 (+ -1 (- A) B)))))
;(EQUAL (FLOOR R (EXPT 256 (+ 1 A (- B))))
; (R (+ 1 A)
; (+ -1 N)
; (!R B K (+ R (* I (EXPT 256 (+ A (- B) N))))
; ST)))
(INTEGERP A)
(<= 0 A)
(INTEGERP B)
(<= 0 B)
;(NOT (ZP K))
(<= B A)
;(<= (+ A N) (+ B K))
;(< A (+ B K))
(INTEGERP (* R (EXPT 256 (+ (- A) B)))))
(INTEGERP (* (EXPT 256 (+ (- A) B))
(MOD R (EXPT 256 (+ 1 A (- B)))))))))
(defthm mx-rover-correct-lemma1
(implies (and (natp a)
(natp n)
(natp b)
(not (zp k))
(<= b a)
(<= (+ a n) (+ b k)))
(equal (r a n (!r b k v st))
(mod (ash v (* -8 (- a b))) (expt 256 n))))
:hints (("Goal" :in-theory (enable r)
:induct (R A N (!R B K V ST)))))
(defthm mx-rover-correct-lemma2
(implies (and (natp a)
(natp n)
(natp b)
(not (zp k))
(<= b a)
(< a (+ b k))
(< (+ b k) (+ a n)))
(equal (r a n (!r b k v st))
(+ (mod (ash v (* -8 (- a b)))
(expt 256 (- (+ b k) a)))
(ash (r (+ b k) (- n (- (+ b k) a)) st)
(* 8 (- (+ b k) a))))))
:hints (("Goal" :in-theory (enable r)
:induct (R A N (!R B K V ST)))))
(defthm mx-rover-correct-lemma3
(implies (and (natp a)
(natp n)
(natp b)
(not (zp k))
(< a b)
(< b (+ a n)))
(equal (r a n (!r b k v st))
(+ (r a (- b a) st)
(ash (r b (- n (- b a))
(!r b k v st)) (* 8 (- b a))))))
:hints (("Goal" :in-theory (enable r)
:induct (R A N (!R B K V ST)))))
(in-theory (disable mx-rover-correct-lemma1
mx-rover-correct-lemma2
mx-rover-correct-lemma3))
|