1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
; driver.lsp Vivek & Warren
; Copyright (C) 2020-2022, ForrestHunt, Inc.
;
; License: A 3-clause BSD license. See the file books/3BSD-mod.txt.
;
; See file ``README'' for additional information.
(prog2$ (cw "~%~%VWSIM 2.9~%~%")
"VWSIM 2.9")
; This is the top-level file that must be loaded to use VWSIM. This
; file performs the simulator setup and enables floating-point
; simulation. See the "Floating-point use in VWSIM" discussion below
; for more information.
; Floating-point use in VWSIM
; ===========================
; The VWSIM simulator makes use of double-precision floating-point
; (fp) arithmetic. Why use fp numbers?
; 1. Over the course of a simulation, repeated calculations and
; incremental updates to rational values cause them to explode in size
; (causing an increase in storage requirements and slowing down
; arithmetic). Meanwhile, double-precision fp numbers are of fixed
; size.
; 2. Hardware-support for fast fp arithmetic. By declaring to the LISP
; compiler that the operands to a function are fp numbers, it may
; generate more efficient code. For example, for a simple addition,
; instead of generating code that calls the general-purpose LISP
; adder, we could simply generate a single fp ADD instruction.
; The problem, however, is that ACL2 does not provide native support
; for floating-point numbers and arithmetic! Until ACL2 supports fp
; arithmetic, we use a work-around to appeal to raw LISP for fp
; calculations. Our approach for doing this is as follows:
; We define the simulator in two stages. First in the ACL2 logic and
; then in raw lisp.
; Stage 1 (In the logical world)
; ------------------------------
; We define the simulator in the ACL2 logical world.
; During this logical definition, whenever the simulator needs to
; recognize a floating-point number, it makes use of the "nump"
; recognizer (see the definition in "num.lisp").
; When the simulator needs to appeal to fp arithmetic, it uses the
; special functions defined in "arith-fp.lisp". Our general convention
; is to name each of these functions with the "f" as its first
; character. For example, the function "f+" adds two floating point
; numbers, "f-" subtracts two floating point numbers, and "f-sin"
; calculates the sine of a floating-point number. When the simulator
; is defined in the logic, these fp functions simply perform rational
; arithmetic, or in the case of non-rational functions (like
; trigonometric functions) are encapsulated (uninterpreted) functions
; with some specified properties.
; Stage 1 is performed by the following form.
(set-inhibit-warnings "Skip-proofs")
; include the simulator and its utilities
(include-book "top" :ttags :all)
(set-inhibit-warnings)
; Stage 2 (In the raw lisp world)
; -------------------------------
; Now that the simulator has been defined in the logic, we reload the
; simulator to use raw lisp fp functionality. The next form below adds
; the :RAW feature to *features*. Then, we reload the simulator files
; that make use of the special fp functions. These files check whether
; the :RAW feature has been defined, and if it has, then they define
; the fp-related functions to actually perform the raw lisp fp
; operations. This is completed by the state-global-let* form.
; The rest of this file defines some top-level utilities to interact
; with the simulator more easily.
(set-raw-mode-on!)
#|
(let (;; in the scope of the following form, manually set
;; *default-pathname-defaults* (special variable analog for CBD
;; in COMMON LISP) for the COMMON LISP "load"s below.
(*default-pathname-defaults* (pathname (cbd))))
(state-global-let*
((connected-book-directory (cbd)))
(progn
(load "raw.lsp")
;; contains #-raw #+raw
(load "dz-unc/fake-dz-unc.lisp")
(load "arith-fp.lisp")
(load "read-float.lisp")
(load "vw-eval.lisp")
(load "rtime.lisp")
(load "vw-eval-ar.lisp")
(load "sra-vw-flat-sim-help.lisp")
(load "sra-vw-flat-sim.lisp")
(load "write-csv.lisp")
(load "print-records-rec.lisp") ;; new
;; We need `set-cbd' since `load' is not smart enough to reset the
;; cbd on its own, but the book being loaded below itself has
;; (include-book "../vw-flat-hdl")
;; and we want that ".." to refer back to the present (driver)
;; directory.
;; The point is that ACL2's include-book is sensitive to the cbd,
;; so we set the cbd appropriately here before encountering the
;; include-book forms in the book LOADed below.
(with-live-state (set-cbd "parse-spice"))
(load "parse-spice/spice-to-vwsim.lisp")
(value :invisible)))
)
|#
; Requires updating to a recent ACL2 (due to a change made in November)
(state-global-let*
((connected-book-directory (cbd)
;; restore not only cbd but also
;; *default-pathname-defaults*
set-cbd-state))
(progn
(load "raw.lsp")
;; contains #-raw #+raw
(load "dz-unc/fake-dz-unc.lisp")
(load "arith-fp.lisp")
(load "read-float.lisp")
(load "vw-eval.lisp")
(load "rtime.lisp")
(load "vw-eval-ar.lisp")
(load "sra-vw-flat-sim-help.lisp")
(load "sra-vw-flat-sim.lisp")
(load "write-csv.lisp")
(load "print-records-rec.lisp") ;; new
;; We need `set-cbd' since `load' is not smart enough to reset the
;; cbd on its own, but the book being loaded below itself has
;; (include-book "../vw-flat-hdl")
;; and we want that ".." to refer back to the present (driver)
;; directory.
;; The point is that ACL2's include-book is sensitive to the cbd,
;; so we set the cbd appropriately here before encountering the
;; include-book forms in the book LOADed below.
(with-live-state (set-cbd "parse-spice"))
;; Given the set-cbd above and the fact that *default-pathname-defaults*
;; tracks the cbd, the filenae "spice-to-vwsim.lisp" is interpreted relative
;; to the parse-spice/ directory.
(load "spice-to-vwsim.lisp")
(value :invisible)))
; For tighter checking and potentially more informative backtraces:
; (declaim (optimize (speed 0) (safety 3)))
(set-raw-mode nil)
(defun init-Abr-aux
; This function initializes the fields in the Abr STOBJ given a new
; VWSIM HDL netlist. The Abr STOBJ holds most of the information about
; the simulation state.
(netlist
global-nodes
sim-type ;; 'voltage or 'phase
equations ;; t = return equations; nil = perform simulation
time-step
time-stop
time-start
tran-time-step
tran-time-stop
tran-time-start
load-sim
Abr
ctx
state
)
(declare (xargs
;; the function ``parse-spice-result'' is a program-mode
;; function
:mode :program
:stobjs (Abr state)))
(b* (;; Read, parse, and sort an input netlist
(sorted-netlist (topological-sort netlist))
(- (cw "vwsim: topological-sort completed!~%"))
;; If global nodes are declared, emit warning
(- (if global-nodes
(cw "WARNING: Global node(s) defined. The use of ~
global nodes is discouraged.~%") 0))
;; Flatten netlist while attempting to respect global nodes
(flat-occs (flatten-netlist sorted-netlist global-nodes))
(- (cw "vwsim: flatten-netlist completed!~%"))
;; Just decide that the reference Node is named signal ``GND''
(reference-node 'GND)
;; Set the start time. If ``equations'' non-NIL, just set
;; times to zero.
(time-start
(if equations
0
(if time-start
time-start
(if tran-time-start
tran-time-start
(prog2$ (er hard? ctx
"No simulation start time provided.~%")
0)))))
;; How should we deal with a non-zero time-start?
;; Remember, all times are rational numbers and not floats!
((unless (= time-start 0))
(prog2$
(er hard? ctx
"non-zero time-start is currently not supported.~%")
(mv Abr state)))
;; How do you use max-time-step?
(time-step
(if equations
(* 1 *femto*)
(if time-step
time-step
(if tran-time-step
tran-time-step
(prog2$ (er hard? ctx
"No simulation time step provided.~%")
0)))))
;; Arrange for a stop time.
(time-stop
(if equations
(* 1 *femto*)
(if time-stop
time-stop
(if tran-time-stop
tran-time-stop
(prog2$ (er hard? ctx
"No simulation stop time provided.~%")
0)))))
(- (if (or (not (= time-start 0)) ;; We may want to relax this
;; constraint...
(>= time-start time-stop)
(<= time-step 0))
(prog2$ (er hard? ctx
"Simulation time specification error.~%")
0)
nil))
;; initialize the Abr fields
(Abr (!flat-occs flat-occs Abr))
(Abr (!ref-node reference-node Abr))
(Abr (!time-start time-start Abr))
(Abr (!hn time-step Abr))
(Abr (!time-stop time-stop Abr))
(Abr (!sim-type sim-type Abr))
(Abr (!equations equations Abr))
(Abr (!alter-values-alist nil Abr))
(Abr (!hrchl-netlist sorted-netlist Abr))
(Abr (!load-sim load-sim Abr)))
(mv Abr state)))
(defun init-Abr-cir
; This function initializes the fields in the Abr STOBJ given a new
; SPICE-file description of a circuit.
(input-file ;; path to the input .cir file
sim-type ;; 'voltage or 'phase
equations ;; t = return equations; nil = perform simulation
cir-concat-char ;; the heirarchical circuit concatenation
;; character (typically #\| or #\/) in the cir
;; file
global-nodes-top ;; list of globally-defined nodes provided from
;; top-level simulation command.
; if supplied, time-step, time-end, and time-start take
; precedence over those given in the .tran statement in the
; SPICE file
time-step
time-stop
time-start
load-sim
Abr
state
)
(declare (xargs
;; the function ``parse-spice-result'' is a program-mode
;; function
:mode :program
:stobjs (Abr state)))
(b* ((ctx 'init-Abr-cir)
;; Note: vwsim uses the #\/ character to concatenate names of
;; heirarchical modules/occurrences.
(vw-concat-char/ #\/)
((mv er-flg parsed-input-file state)
(parse-spice-result input-file state))
((when er-flg)
(prog2$ (er hard? ctx
"Unable to parse the file provided.~%")
(mv Abr state)))
(- (cw "~%vwsim: SPICE file ~p0 parsed!~%" input-file))
(vwsim-modules-time-globals
(spice-to-vwsim parsed-input-file
cir-concat-char vw-concat-char/))
(- (cw "vwsim: spice-to-vwsim completed!~%"))
(netlist (cdr (assoc :modules vwsim-modules-time-globals)))
(global-nodes-cir (cdr (assoc :global-nodes
vwsim-modules-time-globals)))
(global-nodes (remove-duplicates (append global-nodes-cir
global-nodes-top)))
(tran-time-start (cadr (cdr (assoc :time-start
vwsim-modules-time-globals))))
(tran-time-step (cadr (cdr (assoc :time-step
vwsim-modules-time-globals))))
(tran-time-stop (cadr (cdr (assoc :time-stop
vwsim-modules-time-globals))))
;; initialize the Abr fields
((mv abr state)
(init-abr-aux netlist global-nodes sim-type equations time-step
time-stop time-start tran-time-step tran-time-stop
tran-time-start load-sim Abr ctx state))
(prints (cdr (assoc :prints vwsim-modules-time-globals)))
(Abr (!prints prints Abr))
(Abr (!cir-concat-char cir-concat-char Abr))
(Abr (!vw-concat-char vw-concat-char/ Abr)))
(mv Abr state)))
(defun init-Abr-netlist
; This function initializes the fields in the Abr STOBJ given a new
; SPICE-file description of a circuit. This performs some checks
; before calling init-Abr-aux, which does most of the work.
(netlist ;; heirarchical netlist to simulate
sim-type ;; 'voltage or 'phase
equations ;; t = return equations; nil = perform simulation
global-nodes
time-step
time-stop
time-start
load-sim
Abr
state
)
(declare (xargs
;; the function ``parse-spice-result'' is a program-mode
;; function
:mode :program
:stobjs (Abr state)))
(b* ((ctx 'init-Abr-netlist)
;; some checks before sorting. Ex. netlist-syntax-okp etc.
(- (cw "netlist!"))
((unless (modules-syntax-okp netlist))
(prog2$
(er hard? ctx
"init-Abr-netlist: the provided netlist is not ~
well-formed.~%")
(mv Abr state))))
(init-abr-aux netlist global-nodes sim-type equations
time-step time-stop time-start
nil nil nil ;; tran-time-step tran-time-stop
;; tran-time-start
load-sim Abr ctx state)))
(defun init-Abr-load
; This function initializes the fields in the Abr STOBJ given a file
; that stores a saved VWSIM simulation.
(input-file ;; path to the file to load old simulation from.
time-step
time-stop
Abr
rtime
rec
st-vals
state)
(declare (xargs :mode :program
:stobjs (Abr rtime rec st-vals state)))
(b* (((mv ?flg Abr rtime rec st-vals state)
(load-Abr-from-file input-file Abr rtime rec st-vals state))
(Abr (!load-sim t Abr))
(Abr (if time-step
;; if no time-step is provided, the time-step from
;; the previous simulation will be used.
(!hn time-step Abr)
Abr))
((mv Abr state)
(if time-stop
(if (<= time-stop (time-stop Abr))
(prog2$
(cw "init-Abr-load: the loaded simulation ends at ~
time ~p0. Please provide a time-stop that ~
exceeds this time.~%" (time-stop Abr))
(mv Abr state))
;; the simulation will resume at the time that the
;; previous simulation ended + the time-step (hn)
(let* ((Abr (!time-start (+ (current-time Abr)
(hn Abr))
Abr))
(Abr (!time-stop time-stop Abr)))
(mv Abr state)))
(prog2$
(er hard 'init-Abr-load
"init-Abr-load: the loaded simulation ends at time ~
~x0. Please provide a time-stop for the resumed ~
simulation.~%"
(time-stop Abr))
(mv Abr state))))
(nvars (len (all-rec-names Abr)))
(ncycles (+ (length (time-list rtime))
(ncycles (time-start Abr)
(time-stop Abr)
(hn Abr))))
((when (< (* ncycles nvars) (arl rec)))
(prog2$
(er hard 'init-Abr-load
"Implementation error: attempted to shrink the array of ~
rec from size ~x0 to size ~x1 (which is the product of ~
ncycles = ~x2 and nvars = ~x3)."
(arl rec) (* ncycles nvars) ncycles nvars)
(mv Abr rtime rec st-vals state)))
(rec (resize-ar ncycles nvars rec)))
(mv Abr rtime rec st-vals state)))
(defun vwsim-fn
; This function performs the requested simulation. The VWSIM macro
; provides defaults for some of the input arguments.
(input ;; path to the input .cir file
sim-type ;; 'voltage or 'phase
equations ;; t = return equations; nil = perform simulation
cir-concat-char ;; the heirarchical circuit concatenation
;; character (typically #\| or #\/) in the cir file
spice-print ;; t = use .print statements in SPICE fil, nil =
;; return the VWSIM record
;; if supplied, time-step, time-end, and time-start take
;; precedence over those given in the .tran statement in the
;; SPICE file
global-nodes
time-step
time-stop
time-start
output-file ; for write-csv
load-sim
save-var
save-sim
save-sim-shortp
return-records
Abr
st-vals
dz
rtime
rec
state
)
(declare (xargs :mode :program
:stobjs (Abr st-vals dz rtime rec state)))
(b* (((mv Abr rtime rec st-vals state)
(if (stringp input)
;; input is a file name
;; if the file extension is ".lisp", the load-sim flag
;; does not need to be supplied. We keep the load-sim flag
;; around for backwards compatibility.
(let ((load-sim (or load-sim
(file-extension-is-lisp input))))
(if load-sim
(init-Abr-load input time-step time-stop Abr rtime
rec st-vals state)
(b* (((mv Abr state)
(init-Abr-cir input sim-type equations
cir-concat-char global-nodes
time-step time-stop time-start
load-sim Abr state))
(rtime (init-rtime time-start rtime)))
(mv Abr rtime rec st-vals state))))
;; input is a LISP netlist
(b* (((mv Abr state)
(init-Abr-netlist input sim-type equations
global-nodes time-step time-stop
time-start load-sim Abr state))
(rtime (init-rtime time-start rtime)))
(mv Abr rtime rec st-vals state))))
(- (cw "vwsim: simulation starting...~%"))
((mv Abr st-vals dz rtime rec)
(time$ (simulate Abr st-vals dz rtime rec)))
(- (cw "vwsim: simulation ended!~%"))
;; when equations it t, return the symbolic A and b
;; matrices
((when (or equations
(equations Abr)))
(mv nil (list (cons :A (A-sym Abr))
(cons :b (b-sym Abr)))
Abr st-vals dz rtime rec state))
;; when a save-sim file is given, save the simulation state.
((mv Abr rtime rec st-vals state)
(if save-sim
(prog2$ (cw "vwsim: saving simulation to ~x0.~%"
save-sim)
(time$
(write-Abr-to-file save-sim save-sim-shortp Abr
rtime rec st-vals state)))
(mv Abr rtime rec st-vals state)))
((when (not
(or return-records spice-print output-file save-var)))
(mv nil :done Abr st-vals dz rtime rec state))
;; when spice-print is nil, return (a subset of) the VWSIM
;; simulation record as an alist.
((when (not spice-print))
(let* ((rec-names
(cond ((or (eq return-records t)
(and (null return-records)
(or spice-print output-file save-var)))
(all-rec-names Abr))
((not (symbol-listp return-records))
(er hard 'vwsim
"Illegal :return-records argument, ~x0: ~
should be a list of symbols."
return-records))
((subsetp-eq return-records (all-rec-names Abr))
return-records)
(t (er hard 'vwsim
"Illegal :return-records argument, ~x0. ~
The following list contains names ~
provided in that argument that fail to ~
belong to (all-rec-names Abr):~|~x1."
return-records
(set-difference-eq return-records
(all-rec-names Abr))))))
(record-alist
(output-rec-as-alist rec-names
(length (all-rec-names Abr))
rec))
(reversed-record (reverse-records record-alist nil)))
(mv nil reversed-record Abr st-vals dz rtime rec state)))
;; Otherwise, use the .print lines in the SPICE file.
;; Only return the records requested by the user along with
;; the time record
(nvars (len (all-rec-names Abr)))
;; consider storing ncycles in Abr STOBJ
(ncycles (/ (arl rec) nvars))
(print-records
(cons (cons '$time$ (get-rec-var-by-index *$time$-index*
0 ncycles nvars rec))
(print-records-rec rec
ncycles
nvars
(all-rec-names Abr)
(prints Abr)
(flat-occs Abr)
(sim-type Abr)
(cir-concat-char Abr)
(vw-concat-char Abr)))))
(mv nil print-records Abr st-vals dz rtime rec state)))
(defmacro vwsim
; top-level vwsim macro
(input ;; netlist OR path to the input
;; .cir/.lisp file.
&key ;; Keyword parameters
(sim-type ''voltage) ;; 'voltage or 'phase.
(equations 'nil) ;; t = equations; nil = simulation.
(spice-print 'nil) ;; Use SPICE ``.PRINT'' directives.
(global-nodes ;; A list of globally-defined nodes
;; (wires) in the circuit.
'nil)
(time-step 'nil) ;; no default!
(time-stop 'nil) ;; no default!
(time-start '0)
(output-file 'nil) ;; Output ``.csv'' file.
(save-var 'nil) ;; Save simulation output to a global variable
;; in ``state''.
(save-sim 'nil) ;; A filename where the simulation state will
;; be written.
(save-sim-shortp 'nil)
(concat-char ;; the hierarchical netlist name concatenation
;; character.
'#\|)
(return-records 'nil) ;; Return records requested by user
(load-sim 'nil) ;; A boolean; if t, use ``input'' argument to
;; load an existing simulation.
)
`(b* (((mv ?er-flg result Abr st-vals dz rtime rec state)
(vwsim-fn ,input ,sim-type ,equations ,concat-char
,spice-print ,global-nodes ,time-step ,time-stop
,time-start ,output-file ,load-sim ,save-var
,save-sim ,save-sim-shortp ,return-records Abr
st-vals dz rtime rec state)))
(if ,output-file
(mv-let (erp val state)
(write-csv result ,output-file state)
(prog2$ (and erp
(er hard 'vwsim
"Unexpected error from write-csv!"))
(mv :written Abr st-vals dz rtime rec state)))
(if ,save-var
(pprogn (f-put-global ,save-var result state)
(mv :saved Abr st-vals dz rtime rec state))
(mv result Abr st-vals dz rtime rec state)))))
(defmacro vw-output (prints
&key
(output-file 'nil)
(save-var 'nil))
; This macro produces a new alist of the requested simulation
; variables. The alist can be saved to a global variable in state if
; ``save-var'' is provided or written to a csv file if ``output-file''
; is provided.
`(b* (((unless (symbol-symbol-alistp ,prints))
(prog2$ (cw "vw-output: the list of output requests should ~
be an alist.~%")
(mv :error state)))
(nvars (len (all-rec-names Abr)))
;; consider storing ncycles in Abr STOBJ
(ncycles (/ (arl rec) nvars))
((unless (natp ncycles))
(prog2$ (cw "vw-output: the VWSIM simulation state has been ~
corrupted. Please restart the simulator.~%")
(mv :error state)))
(rec-result
(cons (cons '$time$ (get-rec-var-by-index *$time$-index*
0 ncycles nvars rec))
(print-records-rec rec
ncycles
nvars
(all-rec-names Abr)
,prints
(flat-occs Abr)
(sim-type Abr)
(cir-concat-char Abr)
(vw-concat-char Abr)))))
(if ,output-file
(mv-let (erp val state)
(write-csv rec-result ,output-file state)
(prog2$ (and erp
(er hard 'rec-output
"Unexpected error from write-csv!"))
(mv :written state)))
(if ,save-var
(pprogn (f-put-global ,save-var rec-result state)
(mv :saved state))
(mv rec-result state)))))
(defmacro vw-output-all (&key
(output-file 'nil)
(save-var 'nil))
; This macro produces the voltage and phase for every node, and the
; voltage across, current through, and phase across every device.
;; !! Add all-node-names to Abr STOBJ to avoid duplicating this
;; !! work.
`(vw-output (all-print-reqs
(remove-duplicates (all-node-names (flat-occs Abr)))
(strip-cars (flat-occs Abr)))
:output-file ,output-file
:save-var ,save-var))
(defmacro vw-plot (keys csv-file)
; This macro appeals to gnuplot to plot the requested variables. It is
; expected that each of the keys exist in the csv-file.
;; keys is an alist of pairs of the form `((DEVV . signal0) (DEVI
;; . signal1) ...) csv-file is the path to the written simulation
;; results.
`(b* (((unless (symbol-symbol-alistp ,keys))
(cw "vw-plot: the list of plot requests should ~
be an alist.~%"))
(keys-as-strings
(gen-output-names ,keys
(cir-concat-char Abr)
(vw-concat-char Abr))))
(run-gnuplot ,csv-file keys-as-strings)))
(defmacro vw-assoc
; This macro gets a request, (type . name) or '$time$, from an alist
; produced by the vw-output command.
(request alist)
`(b* (((when (equal ,request '$time$))
(assoc-equal '$time$ ,alist))
(request-as-alist (list ,request))
((unless (vw-output-request-alistp request-as-alist))
(cw "vw-assoc: expected a pair consisting of a name and its ~
type.~%"))
(request-as-string
(car (gen-output-names
request-as-alist
(cir-concat-char Abr)
(vw-concat-char Abr)))))
(assoc-equal request-as-string ,alist)))
(set-raw-mode-on!)
(format t "~%; To profile, execute the following, and later, (memsum):~%~s~%"
'(progn (clear-memoize-statistics)
(profile-fn 'vw-eval-subterm-list)
(profile-fn 'back-ar)
(profile-fn 'dz-unc-solve)
(profile-fn 'xp-rec-updates)
(profile-fn 'update-rec-x-names)))
; Here's a more extensive profiling form:
#|
(progn
(profile-fn 'vw-eval-subterm-list)
(profile-fn 'back-ar)
(profile-fn 'dz-unc-solve)
(profile-fn 'xp-rec-updates)
(profile-fn 'update-rec-x-names)
(profile-fn 'init-Abr-cir)
(profile-fn 'output-rec-as-alist)
(profile-fn 'reverse-records)
(profile-fn 'print-records)
(profile-fn 'r2f-tree)
(profile-fn 'simulate-step)
(profile-fn 'simulate)
(profile-fn 'load-b-sym-fold-into-dz)
(profile-fn 'load-a-num-into-dz)
(profile-fn 'stv-vals-to-A-num)
(profile-fn 'dz-unc-decomp)
(profile-fn 'clear-dz-a)
(profile-fn 'init-st-vals)
(profile-fn 'read-rec-ar)
(profile-fn 'read-rec-ar-1)
(profile-fn 'read-stv)
(clear-memoize-statistics))
|#
|