1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
; X86ISA Library
; Note: The license below is based on the template at:
; http://opensource.org/licenses/BSD-3-Clause
; Copyright (C) 2015, May - August 2023, Regents of the University of Texas
; Copyright (C) August 2023 - May 2024, Yahya Sohail
; Copyright (C) May 2024 - August 2024, Intel Corporation
; All rights reserved.
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
; o Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; o Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
; o Neither the name of the copyright holders nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
; Original Author(s):
; Shilpi Goel <shigoel@cs.utexas.edu>
; Contributing Author(s):
; Yahya Sohail <yahya.sohail@intel.com>
(in-package "X86ISA")
;; ----------------------------------------------------------------------
(include-book "top-level-memory")
(include-book "prefix-modrm-sib-decoding")
(include-book "decoding-and-spec-utils")
;; ----------------------------------------------------------------------
(defsection x86-decoder
:parents (machine)
:short "Definitions of the x86 fetch, decode, and execute function
and the top-level run function"
)
(local (xdoc::set-default-parents x86-decoder))
;; ----------------------------------------------------------------------
(define get-prefixes
((proc-mode :type (integer 0 #.*num-proc-modes-1*))
(start-rip :type (signed-byte #.*max-linear-address-size*))
(prefixes :type (unsigned-byte #.*prefixes-width*))
(rex-byte :type (unsigned-byte 8))
(cnt :type (integer 0 15))
x86)
:guard (prefixes-p prefixes)
:guard-hints
(("Goal" :in-theory
(e/d ()
(negative-logand-to-positive-logand-with-integerp-x
signed-byte-p))))
:measure (nfix cnt)
:hints (("Goal" :in-theory (e/d () ((tau-system)))))
:returns
(mv flg
;; This is in fact a (unsigned-byte-p *prefixes-width*)
;; (i.e. a prefixes-p, see (defbitstruct prefixes ...)),
;; as proved later in this DEFINE form.
(new-prefixes natp :rule-classes :type-prescription
:hyp (forced-and (natp prefixes)
(canonical-address-p start-rip)
(x86p x86))
:hints
(("Goal"
:in-theory
(e/d ()
(force
(force)
unsigned-byte-p
acl2::zp-open not
unsigned-byte-p
signed-byte-p
negative-logand-to-positive-logand-with-integerp-x
acl2::ash-0
unsigned-byte-p-of-logior
acl2::zip-open
bitops::unsigned-byte-p-incr)))))
;; This is in fact an (unsigned-byte-p 8),
;; as proved later in this DEFINE form.
(new-rex-byte natp :rule-classes :type-prescription
:hyp (forced-and (natp rex-byte)
(natp prefixes)
(x86p x86))
:hints
(("Goal"
:in-theory
(e/d ()
(force
(force)
acl2::zp-open not
unsigned-byte-p
signed-byte-p
negative-logand-to-positive-logand-with-integerp-x
acl2::ash-0
unsigned-byte-p-of-logior
acl2::zip-open
bitops::unsigned-byte-p-incr)))))
(new-x86 x86p
:hyp (forced-and (x86p x86)
(canonical-address-p start-rip))
:hints
(("Goal"
:in-theory
(e/d ()
(acl2::zp-open
force (force)
not
unsigned-byte-p
signed-byte-p
acl2::ash-0
acl2::zip-open
bitops::logtail-of-logior
unsigned-byte-p-of-logtail
acl2::logtail-identity
bitops::logand-with-negated-bitmask
(:linear bitops::logior-<-0-linear-1)
(:linear bitops::logior-<-0-linear-2)
(:linear bitops::logand->=-0-linear-1)
(:linear bitops::logand->=-0-linear-2)
bitops::logtail-natp
natp-of-get-one-byte-prefix-array-code
acl2::ifix-when-not-integerp
;; bitops::basic-signed-byte-p-of-+
default-<-1
negative-logand-to-positive-logand-with-integerp-x))))))
:parents (x86-decoder)
:short "Fetch and store legacy and REX prefixes, if any, of an instruction"
:long "<p>The function @('get-prefixes') fetches the legacy and REX prefixes
of an instruction and also returns the first byte following the last such
prefix. The input @('start-rip') points to the first byte of an instruction,
which may potentially be a legacy prefix. The initial value of @('cnt')
should be @('15') so that the result @('(- 15 cnt)') returned at the end of
the recursion is the correct number of legacy and/or REX bytes parsed by this
function.</p>
<h3>Legacy Prefixes</h3>
<p>From Intel Manual, Vol. 2, May 2018, Section 2.1.1 (Instruction
Prefixes):</p>
<p><em>Instruction prefixes are divided into four groups, each with a set of
allowable prefix codes. For each instruction, it is only useful to include
up to one prefix code from each of the four groups (Groups 1, 2, 3,
4). Groups 1 through 4 may be placed in any order relative to each
other.</em></p>
<p>Despite the quote from the Intel Manual above, the order of the legacy
prefixes does matter when there is more than one prefix from the same group
--- <b>all but the last prefix from a single prefix group are ignored</b>.
The only <b>exception</b> in this case is for <b>Group 1</b> prefixes --- see
below for details.</p>
<p>Examples:</p>
<ul>
<li>@('0x64_88_00') is @('mov byte ptr fs:[rax], al')</li>
<li>@('0x65_88_00') is @('mov byte ptr gs:[rax], al')</li>
<li>@('0x64_65_88_00') is @('mov byte ptr gs:[rax], al')</li>
<li>@('0x65_64_88_00') is @('mov byte ptr fs:[rax], al')</li>
</ul>
<ul>
<li>@('0xf2_a4') is @('repne movsb byte ptr [rdi], byte ptr [rsi]')</li>
<li>@('0xf3_a4') is @('repe movsb byte ptr [rdi], byte ptr [rsi]')</li>
<li>@('0xf2_f3_a4') is @('repe movsb byte ptr [rdi], byte ptr [rsi]')</li>
<li>@('0xf3_f2_a4') is @('repne movsb byte ptr [rdi], byte ptr [rsi]')</li>
</ul>
<p>We now discuss the Group 1 exception below.</p>
<p>@('0xf0_f2_a4') is <b>NOT</b> <br/>
@('repne movsb byte ptr [rdi], byte ptr [rsi]') <br/>
It is: <br/>
@('lock repne movsb byte ptr [rdi], byte ptr [rsi]') <br/>
Note that lock and rep/repne are Group 1 prefixes. It is important to record
the lock prefix, even if it is overshadowed by a rep/repne prefix, because
the former instruction will not @('#UD'), but the latter instruction will.
This is akin to the lock prefix being in a separate group than the rep/repne
prefixes; in fact, AMD manuals (Section 1.2.1: Summary of Legacy Prefixes,
Vol. 3 May 2018 Edition) treat them as such.</p>
<p>For details about how mandatory prefixes are picked from legacy prefixes,
see @(see mandatory-prefixes-computation).</p>
<h3>REX Prefixes</h3>
<p>A REX prefix (applicable only to 64-bit mode) is treated as a null prefix
if it is followed by a legacy prefix. Here is an illustrative example (using
Intel's XED, x86 Encoder Decoder --- see
@('https://intelxed.github.io/')):</p>
<ul>
<li>@('xed -64 -d 48670100') is @('add dword ptr [eax], eax'); the REX.W
prefix does not have any effect on the operand size, which remains 32 (i.e.,
the default operand size in the 64-bit mode).</li>
<li>@('xed -64 -d 67480100') is @('add qword ptr [eax], rax'); the REX prefix
has the intended effect of promoting the operand size to 64 bits.</li>
</ul>
<p>Note that the prefixes structure output of this function does not include
the REX byte (which is a separate return value of this function), but its
@(':num-prefixes') field includes a count of the REX prefixes encountered.
This is because adding an 8-bit field to the prefixes structure to store a
REX byte will make it a bignum, thereby impacting execution efficiency.</p>"
:prepwork
((defthm return-type-of-prefixes->num-linear
(< (prefixes->num prefixes) 16)
:hints (("Goal" :in-theory (e/d (prefixes->num) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->lck-linear
(< (prefixes->lck prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->lck) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->rep-linear
(< (prefixes->rep prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->rep) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->seg-linear
(< (prefixes->seg prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->seg) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->opr-linear
(< (prefixes->opr prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->opr) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->adr-linear
(< (prefixes->adr prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->adr) ())))
:rule-classes :linear)
(defthm return-type-of-prefixes->nxt-linear
(< (prefixes->nxt prefixes) 256)
:hints (("Goal" :in-theory (e/d (prefixes->nxt prefixes-fix)
())))
:rule-classes :linear)
(defthm return-type-of-prefixes->num-rewrite
(unsigned-byte-p 4 (prefixes->num prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->num) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->lck-rewrite
(unsigned-byte-p 8 (prefixes->lck prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->lck) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->rep-rewrite
(unsigned-byte-p 8 (prefixes->rep prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->rep) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->seg-rewrite
(unsigned-byte-p 8 (prefixes->seg prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->seg) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->opr-rewrite
(unsigned-byte-p 8 (prefixes->opr prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->opr) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->adr-rewrite
(unsigned-byte-p 8 (prefixes->adr prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->adr) ())))
:rule-classes :rewrite)
(defthm return-type-of-prefixes->nxt-rewrite
(unsigned-byte-p 8 (prefixes->nxt prefixes))
:hints (("Goal" :in-theory (e/d (prefixes->nxt prefixes-fix)
())))
:rule-classes :rewrite)
(defthm return-type-of-!prefixes->*-linear
(and (unsigned-byte-p 52 (!prefixes->num x prefixes))
(unsigned-byte-p 52 (!prefixes->lck x prefixes))
(unsigned-byte-p 52 (!prefixes->rep x prefixes))
(unsigned-byte-p 52 (!prefixes->seg x prefixes))
(unsigned-byte-p 52 (!prefixes->opr x prefixes))
(unsigned-byte-p 52 (!prefixes->adr x prefixes))
(unsigned-byte-p 52 (!prefixes->nxt x prefixes)))
:hints (("Goal" :in-theory
(e/d* (!prefixes->num
!prefixes->lck
!prefixes->rep
!prefixes->seg
!prefixes->opr
!prefixes->adr
!prefixes->nxt
prefixes-fix
4bits-fix
8bits-fix)
(unsigned-byte-p
bitops::logand-with-negated-bitmask))))
:rule-classes
((:rewrite)
(:linear :corollary
(and (< (!prefixes->num x prefixes) #.*2^52*)
(< (!prefixes->lck x prefixes) #.*2^52*)
(< (!prefixes->rep x prefixes) #.*2^52*)
(< (!prefixes->seg x prefixes) #.*2^52*)
(< (!prefixes->opr x prefixes) #.*2^52*)
(< (!prefixes->adr x prefixes) #.*2^52*)
(< (!prefixes->nxt x prefixes) #.*2^52*)))))
(defthm loghead-ash-0
(implies (and (natp i)
(natp j)
(natp x)
(<= i j))
(equal (loghead i (ash x j))
0))
:hints (("Goal"
:in-theory (e/d* (acl2::ihsext-inductions
acl2::ihsext-recursive-redefs)
()))))
(local
(defthm signed-byte-p-48-lemma
(implies (signed-byte-p 48 start-rip)
(equal (signed-byte-p 48 (1+ start-rip))
(< (1+ start-rip) *2^47*)))))
(local (in-theory (e/d () (unsigned-byte-p)))))
(if (mbe :logic (zp cnt)
:exec (eql cnt 0))
;; Error, too many prefix bytes --- invalid instruction length.
(mv t prefixes rex-byte x86)
(b* ((ctx 'get-prefixes)
((mv flg (the (unsigned-byte 8) byte) x86)
(rme08-opt proc-mode start-rip #.*cs* :x x86))
((when flg)
(mv (cons ctx flg) byte rex-byte x86))
(prefix-byte-group-code
(the (integer 0 4) (get-one-byte-prefix-array-code byte))))
(case prefix-byte-group-code
(0
(b* ((rex? (and
(eql proc-mode #.*64-bit-mode*)
(equal (the (unsigned-byte 4) (ash byte -4)) 4)))
((when rex?)
(mv-let
(flg next-rip)
(add-to-*ip proc-mode start-rip 1 x86)
(if flg
(mv flg prefixes rex-byte x86)
(get-prefixes
proc-mode next-rip prefixes
byte ;; REX prefix, overwriting a previously encountered REX,
;; if any
(the (integer 0 15) (1- cnt))
x86)))))
;; Storing the number of prefixes seen and the first byte
;; following the prefixes in "prefixes":
(let ((prefixes
(the (unsigned-byte #.*prefixes-width*)
(!prefixes->nxt byte prefixes))))
(mv nil
(the (unsigned-byte #.*prefixes-width*)
(!prefixes->num (- 15 cnt) prefixes))
rex-byte ;; Preserving rex-byte
x86))))
(1
;; LOCK (F0), REPE (F3), REPNE (F2)
(b* (((mv flg next-rip)
(add-to-*ip proc-mode start-rip 1 x86))
((when flg)
(mv flg prefixes rex-byte x86))
((the (unsigned-byte #.*prefixes-width*) prefixes)
(if (equal byte #.*lock*)
(!prefixes->lck byte prefixes)
(!prefixes->rep byte prefixes))))
;; Storing the group 1 prefix (possibly overwriting a
;; previously seen group 1 prefix) and going on...
(get-prefixes
proc-mode next-rip prefixes
0 ;; Nullify a previously read REX prefix, if any
(the (integer 0 15) (1- cnt)) x86)))
(2
;; ES (26), CS (2E), SS (36), DS (3E), FS (64), GS (65)
(b* (((mv flg next-rip)
(add-to-*ip proc-mode start-rip 1 x86))
((when flg)
(mv flg prefixes rex-byte x86)))
(if (or
;; In 64-bit mode, all segment override prefixes except FS
;; and GS overrides are treated as null prefixes. So a
;; segment override prefix other than the FS and GS overrides
;; cannot overshadow a FS/GS override. In case two or more
;; FS/GS overrides are present, all but the last are ignored.
;; Source: XED (https://intelxed.github.io/)
;; Some tests:
;; xed -64 -d 260f0100 => sgdt ptr [rax]
;; xed -64 -d 640f0100 => sgdt ptr fs:[rax]
;; xed -64 -d 64260f0100 => sgdt ptr fs:[rax]
;; xed -64 -d 6426650f0100 => sgdt ptr gs:[rax]
(and (eql proc-mode #.*64-bit-mode*)
(or (equal byte #.*fs-override*)
(equal byte #.*gs-override*)))
;; All segment overrides are active in the 32-bit mode, and
;; all but the last one are ignored.
(not (eql proc-mode #.*64-bit-mode*)))
;; Storing the group 2 prefix (possibly overwriting a
;; previously seen group 2 prefix) and going on...
(get-prefixes
proc-mode next-rip
(the (unsigned-byte #.*prefixes-width*)
(!prefixes->seg byte prefixes))
0 ;; Nullify a previously read REX prefix, if any
(the (integer 0 15) (1- cnt))
x86)
;; We will be here if we are in the 64-bit mode and have seen a
;; null segment override prefix; we will not store the prefix
;; but simply decrement cnt.
(get-prefixes proc-mode next-rip prefixes
0 ;; Nullify a previously read REX prefix, if any
(the (integer 0 15) (1- cnt)) x86))))
(3
;; Operand-Size Override (66)
(mv-let
(flg next-rip)
(add-to-*ip proc-mode start-rip 1 x86)
(if flg
(mv flg prefixes rex-byte x86)
;; Storing the group 3 prefix (possibly overwriting a
;; previously seen group 3 prefix) and going on...
(get-prefixes
proc-mode next-rip
(the (unsigned-byte #.*prefixes-width*)
(!prefixes->opr byte prefixes))
0 ;; Nullify a previously read REX prefix, if any
(the (integer 0 15) (1- cnt))
x86))))
(4
;; Address-Size Override (67)
(mv-let
(flg next-rip)
(add-to-*ip proc-mode start-rip 1 x86)
(if flg
(mv flg prefixes rex-byte x86)
;; Storing the group 4 prefix (possibly overwriting a
;; previously seen group 4 prefix) and going on...
(get-prefixes
proc-mode next-rip
(the (unsigned-byte #.*prefixes-width*)
(!prefixes->adr byte prefixes))
0 ;; Nullify a previously read REX prefix, if any
(the (integer 0 15) (1- cnt))
x86))))
(otherwise
(mv t prefixes rex-byte x86)))))
///
(local (in-theory (e/d () (acl2::zp-open not))))
(defthm-unsigned-byte-p prefixes-width-p-of-get-prefixes.new-prefixes
;; [Shilpi] I tried to use defret here instead of defthm-unsigned-byte-p, but I got
;; into trouble, probably because of the different order of lambda
;; expansions in defret.
:hyp (and (unsigned-byte-p #.*prefixes-width* prefixes)
(canonical-address-p start-rip)
(x86p x86))
:bound #.*prefixes-width*
:concl (mv-nth 1 (get-prefixes
proc-mode start-rip prefixes rex-byte cnt x86))
:hints (("Goal"
:induct (get-prefixes
proc-mode start-rip prefixes rex-byte cnt x86)
:in-theory (e/d ()
(signed-byte-p
acl2::ash-0
acl2::zip-open
bitops::logtail-of-logior
unsigned-byte-p-of-logtail
acl2::logtail-identity
bitops::logand-with-negated-bitmask
(:linear bitops::logior-<-0-linear-1)
(:linear bitops::logior-<-0-linear-2)
(:linear bitops::logand->=-0-linear-1)
(:linear bitops::logand->=-0-linear-2)
bitops::logtail-natp
natp-of-get-one-byte-prefix-array-code
acl2::ifix-when-not-integerp
;; bitops::basic-signed-byte-p-of-+
default-<-1
force (force)))))
:gen-linear t)
(defthm-unsigned-byte-p byte-p-of-get-prefixes.new-rex-byte
;; [Shilpi] I tried to use defret here instead of defthm-unsigned-byte-p, but I got
;; into trouble, probably because of the different order of lambda
;; expansions in defret.
:hyp (and (unsigned-byte-p 8 rex-byte)
(natp prefixes)
(x86p x86))
:bound 8
:concl (mv-nth 2 (get-prefixes
proc-mode start-rip prefixes rex-byte cnt x86))
:hints (("Goal"
:induct (get-prefixes
proc-mode start-rip prefixes rex-byte cnt x86)
:in-theory (e/d ()
(unsigned-byte-p
signed-byte-p
acl2::ash-0
acl2::zip-open
bitops::logtail-of-logior
unsigned-byte-p-of-logtail
acl2::logtail-identity
bitops::logand-with-negated-bitmask
(:linear bitops::logior-<-0-linear-1)
(:linear bitops::logior-<-0-linear-2)
(:linear bitops::logand->=-0-linear-1)
(:linear bitops::logand->=-0-linear-2)
bitops::logtail-natp
natp-of-get-one-byte-prefix-array-code
acl2::ifix-when-not-integerp
;; bitops::basic-signed-byte-p-of-+
default-<-1
force (force)))))
:gen-linear t)
(defret get-prefixes-does-not-modify-x86-state-in-app-view
(implies (app-view x86)
(equal new-x86 x86))
:hints (("Goal"
:in-theory
(union-theories
'(get-prefixes
rme08-does-not-affect-state-in-app-view)
(theory 'minimal-theory)))))
(local
(in-theory (e/d
(rme08 rml08 rvm08)
(force
(force)
signed-byte-p-48-lemma
signed-byte-p
bitops::logior-equal-0
acl2::zp-open
not
(:congruence acl2::int-equiv-implies-equal-logand-2)
(:congruence acl2::int-equiv-implies-equal-loghead-2)))))
(defthm num-prefixes-get-prefixes-bound
(implies (and (<= cnt 15)
(x86p x86)
(canonical-address-p start-rip)
(unsigned-byte-p #.*prefixes-width* prefixes)
(< (part-select prefixes :low 0 :high 2) 5))
(<=
(prefixes->num
(mv-nth
1
(get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)))
15))
:hints (("Goal"
:induct (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
:in-theory (e/d (rme08 rme08-value-when-error)
(signed-byte-p
unsigned-byte-p rme08 rml08
(force) force
canonical-address-p
not acl2::zp-open
acl2::ash-0
acl2::zip-open
bitops::logtail-of-logior
unsigned-byte-p-of-logtail
acl2::logtail-identity
bitops::logand-with-negated-bitmask
(:linear bitops::logior-<-0-linear-1)
(:linear bitops::logior-<-0-linear-2)
(:linear bitops::logand->=-0-linear-1)
(:linear bitops::logand->=-0-linear-2)
bitops::logtail-natp
natp-of-get-one-byte-prefix-array-code
acl2::ifix-when-not-integerp
;; bitops::basic-signed-byte-p-of-+
default-<-1))))
:rule-classes :linear)
(defthm get-prefixes-opener-lemma-zero-cnt
(implies (zp cnt)
(equal (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(mv t prefixes rex-byte x86)))
:hints (("Goal" :in-theory (e/d (get-prefixes) ()))))
(local
(defthmd get-prefixes-opener-lemma-no-prefix-byte-pre
;; Note that this lemma is applicable in the system-level view too.
;; This lemma would be used for those instructions which do not have
;; any prefix byte.
(b* (((mv flg byte byte-x86)
(rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code
(get-one-byte-prefix-array-code byte)))
(implies
(and (not flg)
(zp prefix-byte-group-code)
(not (zp cnt)))
(equal
(get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(b* ((rex? (and
(eql proc-mode #.*64-bit-mode*)
(equal (ash byte -4) 4)))
((when rex?)
(mv-let
(flg next-rip)
(add-to-*ip proc-mode start-rip 1 byte-x86)
(if flg
(mv flg prefixes rex-byte byte-x86)
(get-prefixes
proc-mode next-rip prefixes
byte ;; REX prefix, overwriting a previously encountered REX,
;; if any
(the (integer 0 15) (1- cnt))
byte-x86)))))
;; Storing the number of prefixes seen and the first byte
;; following the prefixes in "prefixes":
(let ((prefixes
(!prefixes->nxt byte prefixes)))
(mv nil
(!prefixes->num (- 15 cnt) prefixes)
rex-byte ;; Preserving rex-byte
byte-x86))))))
:hints (("Goal"
:induct
(get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
:in-theory (e/d () (unsigned-byte-p))))))
(defthm get-prefixes-opener-lemma-no-prefix-byte
;; This lemma is applicable in all the views of the x86isa model. This
;; lemma would be used for those instructions which do not have any prefix
;; byte --- either legacy or rex.
(implies
(b* (((mv flg byte &)
(rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code
(get-one-byte-prefix-array-code byte)))
(and (not flg)
(zp prefix-byte-group-code)
(if (equal proc-mode #.*64-bit-mode*)
(not (equal (ash byte -4) 4))
t)
(not (zp cnt))))
(equal
(get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(let ((prefixes
(!prefixes->nxt
(mv-nth 1 (rme08 proc-mode start-rip #.*cs* :x x86))
prefixes)))
(mv nil
(!prefixes->num (- 15 cnt) prefixes)
rex-byte ;; Preserving rex-byte
(mv-nth 2 (rme08 proc-mode start-rip #.*cs* :x x86))))))
:hints (("Goal" :in-theory (e/d (get-prefixes-opener-lemma-no-prefix-byte-pre)
(rme08 get-prefixes)))))
(defthm get-prefixes-opener-lemma-no-legacy-prefix-but-rex-prefix
;; Note that this lemma is applicable only in 64-bit mode.
;; This lemma is applicable in all the views of the x86isa model.
(implies
(b* (((mv flg byte &)
(rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code
(get-one-byte-prefix-array-code byte)))
(and (equal proc-mode #.*64-bit-mode*)
(not flg)
(zp prefix-byte-group-code)
(equal (ash byte -4) 4)
(not (zp cnt))))
(equal
(get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(b* (((mv & byte byte-x86)
(rme08 proc-mode start-rip #.*cs* :x x86))
((mv flg next-rip)
(add-to-*ip proc-mode start-rip 1 byte-x86)))
(if flg
(mv flg prefixes rex-byte byte-x86)
(get-prefixes
proc-mode next-rip prefixes
byte ;; REX prefix, overwriting a previously encountered REX,
;; if any
(1- cnt)
byte-x86)))))
:hints (("Goal" :in-theory (e/d (get-prefixes-opener-lemma-no-prefix-byte-pre)
(rme08 get-prefixes)))))
(defthm get-prefixes-opener-lemma-group-1-prefix
(b* (((mv flg byte byte-x86)
(rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code (get-one-byte-prefix-array-code byte)))
(implies
(and (or (app-view x86)
(not (marking-view x86)))
(not flg) ;; No error in reading a byte
(equal prefix-byte-group-code 1)
(not (zp cnt))
(not (mv-nth 0 (add-to-*ip proc-mode start-rip 1 x86))))
(equal (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(let ((prefixes
(if (equal byte #.*lock*)
(!prefixes->lck byte prefixes)
(!prefixes->rep byte prefixes))))
(get-prefixes
proc-mode (1+ start-rip) prefixes 0 (1- cnt) byte-x86)))))
:hints (("Goal"
:in-theory
(e/d* (add-to-*ip)
(rb
unsigned-byte-p
negative-logand-to-positive-logand-with-integerp-x)))))
(defthm get-prefixes-opener-lemma-group-2-prefix
(b* (((mv flg byte byte-x86)
(rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code
(get-one-byte-prefix-array-code
byte)))
(implies
(and (or (app-view x86)
(and (not (app-view x86))
(not (marking-view x86))))
(not flg) ;; No error in reading a byte
(equal prefix-byte-group-code 2)
(not (zp cnt))
(not (mv-nth 0 (add-to-*ip proc-mode start-rip 1 x86))))
(equal (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(if (or
(and (eql proc-mode #.*64-bit-mode*)
(or (equal byte #.*fs-override*)
(equal byte #.*gs-override*)))
(not (eql proc-mode #.*64-bit-mode*)))
(get-prefixes proc-mode (1+ start-rip)
(!prefixes->seg byte prefixes)
0
(1- cnt) byte-x86)
(get-prefixes
proc-mode (1+ start-rip) prefixes 0 (1- cnt) byte-x86)))))
:hints (("Goal"
:in-theory
(e/d* (add-to-*ip)
(rb
unsigned-byte-p
negative-logand-to-positive-logand-with-integerp-x)))))
(defthm get-prefixes-opener-lemma-group-3-prefix
(b* (((mv flg byte x862) (rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code (get-one-byte-prefix-array-code byte)))
(implies (and (not flg) ;; No error in reading a byte
(equal prefix-byte-group-code 3)
(not (zp cnt))
(not (mv-nth 0 (add-to-*ip proc-mode start-rip 1 x862))))
(equal (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(get-prefixes proc-mode (1+ start-rip)
(!prefixes->opr byte prefixes)
0
(1- cnt) x862))))
:hints (("Goal"
:in-theory
(e/d* (add-to-*ip)
(rb
unsigned-byte-p
negative-logand-to-positive-logand-with-integerp-x)))))
(defthm get-prefixes-opener-lemma-group-4-prefix
(b* (((mv flg byte x862) (rme08 proc-mode start-rip #.*cs* :x x86))
(prefix-byte-group-code (get-one-byte-prefix-array-code byte)))
(implies (and (not flg) ;; No error in reading a byte
(equal prefix-byte-group-code 4)
(not (zp cnt))
(not (mv-nth 0 (add-to-*ip proc-mode start-rip 1 x862))))
(equal (get-prefixes proc-mode start-rip prefixes rex-byte cnt x86)
(get-prefixes proc-mode (1+ start-rip)
(!prefixes->adr
byte
prefixes)
0
(1- cnt) x862))))
:hints (("Goal"
:in-theory
(e/d* (add-to-*ip)
(rb
unsigned-byte-p
negative-logand-to-positive-logand-with-integerp-x)))))
(local
(defret xr-msr-and-seg-hidden-of-get-prefixes-in-app-view
(implies (app-view x86)
(and
(equal (xr :msr idx new-x86)
(xr :msr idx x86))
(equal (xr :seg-hidden-base idx new-x86)
(xr :seg-hidden-base idx x86))
(equal (xr :seg-hidden-limit idx new-x86)
(xr :seg-hidden-limit idx x86))
(equal (xr :seg-hidden-attr idx new-x86)
(xr :seg-hidden-attr idx x86))))
:hints (("Goal"
:in-theory (e/d () (las-to-pas rb rme08 rml08))))))
(local
(defret xr-msr-of-get-prefixes-in-sys-view
(implies (not (app-view x86))
(and
(equal (xr :msr idx new-x86)
(xr :msr idx x86))
(equal (xr :seg-hidden-base idx new-x86)
(xr :seg-hidden-base idx x86))
(equal (xr :seg-hidden-limit idx new-x86)
(xr :seg-hidden-limit idx x86))
(equal (xr :seg-hidden-attr idx new-x86)
(xr :seg-hidden-attr idx x86))))
:hints (("Goal"
:induct <call>
:in-theory (e/d ()
(unsigned-byte-p get-prefixes-opener-lemma-group-4-prefix
get-prefixes-opener-lemma-group-3-prefix
las-to-pas rb rme08 rml08))))))
(local
(defret xr-msr-of-get-prefixes
(and
(equal (xr :msr idx new-x86)
(xr :msr idx x86))
(equal (xr :seg-hidden-base idx new-x86)
(xr :seg-hidden-base idx x86))
(equal (xr :seg-hidden-limit idx new-x86)
(xr :seg-hidden-limit idx x86))
(equal (xr :seg-hidden-attr idx new-x86)
(xr :seg-hidden-attr idx x86)))
:hints (("Goal"
:cases ((app-view x86))
:do-not-induct t
:in-theory (e/d () (get-prefixes las-to-pas rb rme08 rml08))))))
(defret 64-bit-modep-of-get-prefixes
(equal (64-bit-modep new-x86)
(64-bit-modep x86))
:hints (("Goal"
:do-not-induct t
:in-theory (e/d (64-bit-modep) ()))))
(defret x86-operation-mode-of-get-prefixes
(equal (x86-operation-mode new-x86)
(x86-operation-mode x86))
:hints (("Goal" :in-theory (e/d (x86-operation-mode) (get-prefixes))))))
|